Automatic anomaly detection using NfSen

Wim Biemolt, SURFnet

Werner Schram, SURFnet
Automatic anomaly detection using NfSen

- SURFnet and netflow anomaly detection
 - NERD
 - NfSen
 - PeakFlow SP
- Currently used detection methods
 - DDos
 - Botnet
 - Holt-Winters aberrant behavior
- **NERD v1**
 - Developed by TNO
 - Based on cflowd
 - cflowd is no longer supported

- **NERD v2**
 - Initially developed by TNO
 - Has serious performance problems
 - NfSen can do the same but without the performance problems
Netflow Sensor (NfSen) is a network statistics tool. Developed by Peter Haag, currently in active development, includes an alert plug-in system, a generic plug-in system, and some plug-ins already available.
Overview Profile: live, Group: (nogroup)
DDos detection

- Simple flow analysis
 - based on NERD v1 DDos detection
 - using a low threshold and a high threshold
 - Rules for traffic between those thresholds
 - Custom thresholds for high load services
SURFnet – Automatic anomaly detection using NfSen

Expected traffic

![Graph showing expected traffic levels.](image)
Definitively Conspicuous Traffic

![Graph showing Definitively Conspicuous Traffic]

SURFnet – Automatic anomaly detection using NfSen
Border cases
High load servers
Custom thresholds
The DDoS alarms between 2007-12-07 and 2007-12-15

<table>
<thead>
<tr>
<th>ID</th>
<th>Destination</th>
<th>Flows per 5 minutes</th>
<th>Average packets/flow</th>
<th>Average bytes/flow</th>
<th>Starttime</th>
<th>Stoptime</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>#50592</td>
<td></td>
<td>7772</td>
<td>5054</td>
<td></td>
<td>4 2007-12-14 08:55:00 2007-12-14 16:32:50</td>
<td>1</td>
<td>Delete</td>
</tr>
<tr>
<td>#50596</td>
<td></td>
<td>10620</td>
<td>3859</td>
<td></td>
<td>4 2007-12-14 08:39:54 2007-12-14 16:32:50</td>
<td>1</td>
<td>Delete</td>
</tr>
<tr>
<td>#50594</td>
<td></td>
<td>9510</td>
<td>3147</td>
<td></td>
<td>3 2007-12-14 08:25:01 2007-12-14 16:32:50</td>
<td>1</td>
<td>Delete</td>
</tr>
<tr>
<td>#50590</td>
<td></td>
<td>12951</td>
<td>129</td>
<td></td>
<td>2 2007-12-14 08:24:58 2007-12-14 16:32:50</td>
<td>1</td>
<td>Delete</td>
</tr>
<tr>
<td>#50490</td>
<td></td>
<td>9517</td>
<td>73</td>
<td></td>
<td>1 2007-12-13 06:13:41 2007-12-14 16:32:50</td>
<td>1</td>
<td>Delete</td>
</tr>
<tr>
<td>#49220</td>
<td></td>
<td>281618</td>
<td>163</td>
<td></td>
<td>1 2007-12-04 14:47:47 2007-12-14 16:32:50</td>
<td>1</td>
<td>Delete</td>
</tr>
<tr>
<td>#49074</td>
<td></td>
<td>22047</td>
<td>171</td>
<td></td>
<td>2 2007-11-26 13:32:20 2007-12-14 16:32:50</td>
<td>1</td>
<td>Delete</td>
</tr>
<tr>
<td>#50656</td>
<td></td>
<td>5222</td>
<td>2550</td>
<td></td>
<td>3 2007-12-14 16:20:07 2007-12-14 16:29:56</td>
<td>1</td>
<td>Delete</td>
</tr>
<tr>
<td>#50635</td>
<td></td>
<td>6031</td>
<td>1155</td>
<td></td>
<td>7 2007-12-14 11:44:53 2007-12-14 16:22:51</td>
<td>1</td>
<td>Delete</td>
</tr>
</tbody>
</table>
DDos interface: Details

Top 10 Flows per 5 minutes at 2007-12-14 16:37:40:

<table>
<thead>
<tr>
<th>address</th>
<th>Bytes</th>
<th>port_usage</th>
<th>last seen</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1379</td>
<td>2947950</td>
<td>1046</td>
<td>2007-12-14 12:37:51</td>
<td>Report port scan, analyse</td>
</tr>
<tr>
<td>1353</td>
<td>2597466</td>
<td>1038</td>
<td>2007-12-14 12:53:00</td>
<td>Report port scan, analyse</td>
</tr>
<tr>
<td>1342</td>
<td>25963826</td>
<td>1071</td>
<td>2007-12-14 13:03:01</td>
<td>Report port scan, analyse</td>
</tr>
<tr>
<td>1341</td>
<td>2997262</td>
<td>16971</td>
<td>2007-12-14 13:17:59</td>
<td>Report port scan, analyse</td>
</tr>
</tbody>
</table>
Botnet detection

- Hosts infected by viruses connect to hosts known as botnet controllers
- List of botnet controllers are available, for example: http://www.bleedingthreats.net/rules/bleeding-botcc.rules
- Our plug-in logs all hosts that connect to known botnet controllers
- Automatically reports to incident report system using IODEF
SURFnet – Automatic anomaly detection using NfSen

Botnet IODEF reports

Holt-Winters aberrant behavior detection

- Uses information about periodic data to predict aberrant behavior.
Holt-Winters: Example

![Graph showing data with anomalies marked by arrows.](image-url)
Holt-Winters: Original implementation

Trend | Periodic information | Noise

Prediction
Limitations of the original implementation

- The original algorithm has three parameters which define:
 - the weight of historical data
 - the weight of the trend
 - the amount of expected noise
- The original algorithm has a constant learning rate
 - If a low learning rate is used, the selection of the initial values is critical. This will introduce false positives for a long time.
 - With a high learning rate, the model will likely be overfitted. This will introduce false negatives
- The trend parameter has no significant influence with the resolution we are using
Holt-Winters: Multiple trends

Network traffic time series often show multiple recurring patterns, for example a weekly trend:
Holt-Winters: Multiple periods

- Daily Period
- Weekly Period
- Noise
Learning rate

Fixed learning rate: The first pattern is overweighted

Adaptive learning rate: The weight of the first pattern is relative to the rest
Real data example
Holt Winters: Usage Example

Aberrant ICMP Traffic:
Caused by DDos attack by Stormworm botnet
Holt Winters: Other possible uses

Common SMTP Traffic

Last week SMTP Traffic
Wim Biemolt
Wim.Biemolt@surfnet.nl
www.surfnet.nl

Werner Schram
Werner.Schram@surfnet.nl
www.surfnet.nl