The Method-Framework for Engineering System Architectures (MFESA)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Donald Firesmith
12 March 2008
Tutorial Objectives

Introduce attendees to the Method Framework for Engineering System Architectures (MFESA):

- MFESA *Ontology* of reusable concepts and terminology
- MFESA *Metamodel* of reusable method components
- MFESA *Repository* of reusable method components
 - MFESA Architectural Work Units and Work Products
 - MFESA Architectural Workers
- MFESA *Metamethod* for generating appropriate project-specific system architecture engineering methods

Thereby improve system architecture engineering methods and associated processes (process improvement)
MFESA Project

Started January 2007

Collaborators:

• SEI Acquisition Support Program (ASP) – Don Firesmith (Lead), Peter Capell, Bud Hammons, and Tom Merendino
• MITRE – Dietrich Falkenthal (Bedford MA)
• USAF – DeWitt Latimer (USC Doctorial Student)

Work products:

• Reference Book (Auerbach 2008)
• Tutorials and Training Materials
• Articles
• Mapping to Source Documents
• Informational Website
Intended Tutorial Attendees

System and Subsystem Architects
Process Engineers
Requirements Engineers
Technical and Administrative Managers
Acquirers
Developers
Testers
Trainers and Educators
Standards Developers
Academic Researchers
Any other Stakeholders
Topics

Motivation

MFESA Overview

MFESA Ontology of Concepts and Terminology

MFESA Metamodel of Reusable Method Components

MFESA Repository of Reusable Method Components
 • Architectural Work Units and Work Products
 • Architectural Workers

MFESA Metamethod

Conclusion
System Architecture – Old Definition

System Architecture

the major components of a system, their relationships, and how they collaborate to meet system requirements
System Architecture – MFESA Definition

System Architecture

all of the most important, pervasive, top-level, strategic decisions, inventions, engineering tradeoffs, assumptions, and their associated rationales concerning how the system will meet its derived and allocated requirements

Includes:

• All major logical and physical and static and dynamic structures
• Other architectural decisions, inventions, tradeoffs, assumptions, and rationales:
 — Approach to achieve quality requirements
 — Architectural styles, patterns, mechanisms
 — Approach to reuse (build/buy decisions)
• Strategic and pervasive design-level decisions
• Strategic and pervasive implementation-level decisions
Architecture vs. Design

<table>
<thead>
<tr>
<th>Architecture</th>
<th>Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pervasive (Multiple Components)</td>
<td>Local (Single Components)</td>
</tr>
<tr>
<td>Strategic Decisions and Inventions</td>
<td>Tactical Decisions and Inventions</td>
</tr>
<tr>
<td>Higher-Levels of System</td>
<td>Lower-Levels of System</td>
</tr>
<tr>
<td>Huge Impact on Quality, Cost, & Schedule</td>
<td>Small Impact on Quality, Cost, & Schedule</td>
</tr>
<tr>
<td>Drives Design and Integration Testing</td>
<td>Drives Implementation and Unit Testing</td>
</tr>
<tr>
<td>Driven by Requirements and Higher-Level Architecture</td>
<td>Driven by Requirements, Architecture, and Higher-Level Design</td>
</tr>
<tr>
<td>Mirrors Top-Level Development Team Organization (Conway’s Law)</td>
<td>No Impact on Top-Level Development Team Organization</td>
</tr>
</tbody>
</table>
System Architecture Engineering

the subdiscipline of systems engineering consisting of all architectural work units performed by architectural workers (architects, architecture teams, and their tools) to develop and maintain architectural work products (including system or subsystem architectures and their representations)
System Architecture is Critical

Supports achievement of critical architecturally significant requirements
Greatly affects cost and schedule
Enables engineering of system quality characteristics and attributes
Drives all downstream activities
System Architecture Engineering is critical to Project Success

Limitations of Current Methods and Standards

Do not adequately address:

- The increasing size and complexity of many current systems
- All types of architectural components (e.g., software)
- All types of interfaces (interoperability and intraoperability)
- All potentially important system structures, views, models, and other architectural representations
- All life cycle phases (production, evolution, and maintenance of architectural integrity)
- System quality characteristics, attributes, and requirements
- Reuse and component-based development (CBD)
- Specialty engineering areas (such as safety and security)
More Limitations of Current Methods and Standards

Current methods:

- Overemphasize two structures.
- Are weak on structure, view, and model consistency.
- Confuse requirements engineering with architecture engineering.
- Tend to assume that *One Size Fits All*.
- Produce only a single architectural vision.
- Excessively emphasize architectural models over other architectural representations.
Architecture Engineering Challenges

How good is ‘Good enough’?

We lack sufficient adequately trained and experienced architects.

- Many young architects must perform tasks for which many are under qualified.

Architects use multiple inconsistent architecture engineering methods.

Architecture engineering methods are incompletely documented.

Architects rely too much on architectural engineering tools.
Need for Method Engineering

Systems vary greatly in size, complexity, criticality, domain, technology, operational independence, technological diversity, requirements volatility, required quality characteristics and attributes, and volatility of technology and component parts.

Development organizations vary greatly in degrees of centralization, management culture, engineering culture, expertise, experience, and staff co-location.

Endeavors vary greatly in contracting, type, lifecycle scope, schedule, and funding.

Stakeholders vary in terms of type, numbers, authority, and accessibility.

Therefore, no single system architecture engineering method is sufficiently general and tailorable to meet the needs of all endeavors.
Topics

Motivation

MFESA Overview

MFESA Ontology of Concepts and Terminology

MFESA Metamodel of Reusable Method Components

MFESA Repository of Reusable Method Components
 • Architectural Work Units and Work Products
 • Architectural Workers

MFESA Metamethod

Conclusion
Definition

Method-Framework for Engineering System Architectures (MFESA)

a method framework for engineering appropriate situation-specific system architecture engineering (SAE) methods

MFESA is not a single system architecture engineering method.
MFESA Components

- **MFESA**
 - Method Engineering Framework

- **MFESA Ontology**
 - Defines the terms in the

- **MFESA Metamodel**
 - Defines the types of and relationships between the

- **MFESA Repository**
 - Stores the

- **MFESA Metamethod**
 - Describes how to engineer project-specific

- **MFESA Reusable Method Components**
 - Tailored

- **MFESA Reusable Architecture Engineering Methods**
MFESA Addresses Size and Complexity

Date in Years

Maximum Size and Complexity of the System and its Architecture

First Generation General Purpose Individual Standards and Methods

Second Generation Method Frameworks and Project-Specific Methods

Third Generation Approaches Needed

Today
Topics

Motivation

MFESA Overview

MFESA Ontology of Concepts and Terminology

MFESA Metamodel of Reusable Method Components

MFESA Repository of Reusable Method Components
 - Architectural Work Units and Work Products
 - Architectural Workers

MFESA Metamethod

Conclusion
MFESA Ontology

More than merely a glossary
Information model of system architecture engineering
Defines foundational concepts and terminology
Defines relationships between concepts
MFESA Ontology of Concepts and Terminology

System
System Architecture
Architectural Structures
Architectural Styles, Patterns, and Mechanisms
Architectural Drivers and Concerns
Quality Model, Quality Requirements,
Architectural Representations
Architectural Models, Structures, Views, and Focus Areas
Architectural Quality Cases
Architectural Visions
System - Definition

System

a cohesive integrated set of system components (i.e., an aggregation structure) that collaborate to provide the behavior and characteristics needed to meet valid stakeholder needs and desires

Important Ideas:

• Modeled as hierarchical aggregate structure
• Integrated system components
• Components collaborate
• Emergent behavior and properties
System Component Types

Subsystems
Consumable materials (e.g., ammunition, fuel, lubricants, reagents, and solvents)
Data
Documentation (both separate physical and built-in electronic documentation)
Equipment (e.g., maintenance, support, and training equipment)
Facilities (e.g., maintenance, manufacturing, operations, support, training, and disposal facilities including their component property, buildings, and their furnishings)
Hardware
Manual procedures
Networks (for the flow of data, power, and material)
Organizations
Personnel
Physical interfaces
Software
Tools
System – Partial Example

Aircraft System of Systems

Aircraft System
Ground Support System
Maintenance System
Training System

Airframe Segment
- Empennage
 - Horizontal Stabilizers
 - Vertical Stabilizer
 - Tail Cone
- Fuselage
 - Doors
 - Windows
 - Skin
 - Structure
- Wings

Avionics Segment
- Auto Flight
- Communications
- Crew Interface
- Entertainment
- Information Processing
- Navigation
- Prognostics and Health Management
- Sensors

Interiors Segment
- Crew Compartment
 - Passenger Compartments
- Cargo Compartments
- Galleys
- Lavatories
- Emergency Provisions
- Water & Waste
- Environment
- Air Conditioning
- Air Pressure
- Oxygen

Propulsion Segment
- Engines
- Fuel
- Nacelles
- Pylons

Vehicle Segment
- Auxiliary Power
- Electrical Power
- Fire Protection
- Flight Control Surfaces
- Ailerons
- Elevators
- Flaps
- Rudder
- Hydraulic Power
- Pneumatic Power
- Landing Gears
- Shipside Lighting

MFESA Tutorial
Donald Firesmith, 12 March 2008
© 2008 Carnegie Mellon University
Some System Characteristics

Multiple Components
Multiple Interactions between Components
Multiple Structures (Logical and Physical, Static and Dynamic)
Multiple:
 • Views and Viewpoints
 • Models
 • Focus Areas
System Architecture - Ontology

System Architecture

Architect(s)

System

Architectural Decisions
Architectural Inventions
Architectural Tradeoffs
Architectural Assumptions
Associated Rationales

drive

abstracts the

engineer the

1

1
Architectural Structure, Element, and Component – Definitions

Architectural Structure

a cohesive set of architectural elements connected by associated relationships that captures a set of related architectural decisions, inventions, tradeoffs, assumptions, and rationales

Architectural Element

a part of an architectural structure

Architectural Component

a physical architectural element of a static physical aggregation structure
Architectural Structure - Ontology

- Static Structures
- Dynamic Structures
- Logical Structures
- Physical Structures
- Architectural Structures
- Architectural Risks
- System
- Architectural Decisions
- Architectural Inventions
- Architectural Tradeoffs
- Architectural Assumptions
- Associated Rationales
- System Architecture
- Architectural Elements
- Relationships Between Architectural Elements

- Drive
- Drive and constrain
- Consists primarily of
- Incorporate most
- Abstact the
- Are abstractions (models) of the
- May have known

System architecture consists primarily of architectural structures, which are abstractions of the system. Architectural structures drive and constrain architectural elements, which may have known architectural risks.

Architectural elements are connected by relationships between architectural elements.
Architectural Styles, Patterns, and Mechanisms - Definitions

Architectural Pattern

a well-documented reusable solution to a commonly occurring architectural problem within the context of a given set of existing architectural concerns, decisions, inventions, engineering trade-offs, and assumptions

Architectural Style

a top-level architectural pattern that provides an overall context in which lower-level architectural patterns exist

Architectural Mechanism

a major architectural decision or invention, often an element of an architectural pattern
Architectural Styles, Patterns, and Mechanisms - Ontology

Architectural Styles

<<use of>>

Architectural Patterns

<<use of>>

Architectural Mechanisms

<<use of>>

Architectural Structures

1..*

incorporate most

1

1..*

architecture of

System Architecture

consists primarily of

1

abstracts

System

1..*

are abstractions of

1
Architectural Drivers and Concerns - Definitions

Architectural Driver

an architecturally significant product or process requirement that drives the engineering of the system architecture

Architectural Concern

a cohesive collection of architectural drivers
Architectural Drivers and Concerns - Ontology

Architecturally Significant Product Requirements
Architecturally Significant Process Requirements

Architectural Concerns

Architectural Drivers

System Architecture
Drive and constrain are abstractions of the

Architectural Structures

Static Structures
Dynamic Structures
Logical Structures
Physical Structures

Architectural Elements

Relationships Between Architectural Elements

1..*
1..*
1..*
1..*
1
1
1
1
1

Connect

Drive and constrain

Drive the engineering of the

Abstracks the engineering of the

Software Engineering Institute
Carnegie Mellon

MFESA Tutorial
Donald Firesmith, 12 March 2008
© 2008 Carnegie Mellon University
Architectural Concern – An Example

Architectural Concern

Architecturally Significant Requirements

Security Requirements

Confidentiality Requirements

Confidentiality (Architectural Concern)

is partially implemented by

is represented by

Architectural Structures

Architectural Viewpoints

Architectural View

Class Viewpoint

Class Structure

Network Structure

Data Flow Structure

Data Flow Viewpoint

Data Flow Diagram View

Subsystem X Data Flow Diagram (Annotated)

Model Elements

includes relevant parts of

includes relevant parts (e.g., confidential data flow and encryption / decryption) of

Confidentiality Focus Area

Subsystem X Architectural Class Diagram (Annotated)

System Network Diagram (Annotated)
MFESA Quality Model

Architecture Components

System

Quality Model

defines the meaning of the quality of a

defines the meaning of a specific type of quality of a

Quality Characteristics

Quality Attributes

Quality Measurement Scales

Quality Measurement Method

measures quality along

are measured along

are measured using

Internal Quality Characteristics

External Quality Characteristics

measures quality along

are measured along

are measured using
Internal Quality Characteristics

- Quality Characteristic
 - Internal Quality Characteristic
 - Feasibility
 - Affordability
 - Resource Feasibility
 - Intraoperability
 - External Quality Characteristic
 - Producability
 - Current Reusability
 - Reusability
 - Future Reusability
 - Modifiability
 - Extensibility
 - Scalability
 - Testability
 - Preventative Maintainability
 - Perfective Maintainability
 - Corrective Maintainability
 - Adaptive Maintainability
 - Maintainability
 - Feasibility
 - Portability
 - Technological Feasibility
 - Schedule Feasibility
External Quality Characteristics

Quality Characteristic

Internal Quality Characteristic

External Quality Characteristic

Configurability

Efficiency

Functionality

Operability

Usability

Compliance

Dependability

Environmental Compatibility

Interoperability

Serviceability

Defensibility

Performance

Soundness

Usability

Safety

Survivability

Availability

Correctness

Predictability

Robustness

Security

Capacity

Reliability

Stability
Example Characteristic and Attributes

- Jitter
- Latency
- Response Time
- Schedulability
- Throughput

- Mandated Threshold
- Failure Detection
- Failure Reaction
- Failure Adaptation

Performance Problem Type

Performance Solution Type

Performance Attribute

Quality Characteristic

Quality Attribute

is measured along a

Quality Measurement Scale

Quality Model
Example Characteristic and Attributes

- Occurrence of Unauthorized Harm
- Occurrence of Abuse (Mishap, Misuse, or Incident)
- Existence of External Abuser
- Existence of Internal Vulnerability
- Existence of Danger (Hazard or Threat)
- Existence of Defensibility Risk

Problem Type Defensibility Attribute

- Problem Prevention
- Problem Detection
- Problem Reaction
- Problem Adaptation

Solution Type Defensibility Attribute

- Harm Arrest
- Mitigation
- Recovery
- Analysis
- Counterattack (Security)

Defensibility Attribute

- Safety
- Security

Quality Characteristic

Quality Attribute

- Quality Measurement Scale
- Quality Measurement Method

Quality Model

defines the meaning of the quality of a System

measures quality along a
Quality Requirements

- **Quality Goal**: quantitative a
- **Quality Requirement**: defines stakeholders minimum acceptable level of quality of a
- **Subsystem**: defines stakeholders minimum acceptable level of quality of a
- **System**: states stakeholders importance of achieving a

Quality Model

- **Quality Characteristic**: is applicable during
- **Quality Attribute**: shall exceed
- **Quality Criterion**: determines existence of
- **Quality Threshold**: is applicable during
- **Quality Measure**: is measured using a
- **Quality Metric**: is measured along a

- **Condition**
Architectural Representations - Definition

Architectural Representation

a cohesive collection of information that documents a system architecture

Not the same thing as the architecture
Architectural Representations - Ontology

- System Architecture
 - abstracts the
 - System
 - model the behavior of parts of the

- Architectural Representations
 - document the

- Architectural Views
 - instance of

- Architectural Descriptions

- Architectural Models

- Architectural Whitepapers

- Architectural Training Materials

- Architectural Visions

- Architecture Documents

- Architectural Quality Cases

- Architectural Analysis Reports

- Executable Architectural Representations
 - Prototypes
 - Simulations
 - Architecture
 - Executable Architecture

Architectural View Type

Software Engineering Institute | Carnegie Mellon

MFESA Tutorial
Donald Firesmith, 12 March 2008
© 2008 Carnegie Mellon University
Architectural Models, Views, and Focus Areas - Definitions

Architectural Model

an architectural representation that abstracts a single system structure in terms of the structure’s architectural elements and the relationships between them

Architectural View

an architectural representation describing a single architectural structure of a system consisting of one or more related models of that structure

Architectural Focus Area

an architectural representation consisting of the cohesive set of all architectural decisions, decisions, and tradeoffs related to a specific architectural concern, regardless of the architectural view, model, or structure where they are documented or found
Architectural Models, Views, and Focus Areas - Ontology

Quality Attributes

Quality Characteristics

1..* document architectural support for 0..1

Quality Focus Areas

Architectural Representations

Architectural Descriptions

Architectural Focus Areas

1 document support for

include relevant parts of

Architectural Views

Architectural Viewpoint

specifies

1

Architectural Models

Architectural Structures

1..* model

1

1..*

1..*

1..*

1..*

specify mandatory amounts of

Quality Requirements

Quality Concerns

Architectural Concerns

document relevant parts of the

System Architecture

consists primarily of

document individual

software Engineering Institute
Architectural Views

Multifaceted architecture having multiple structures requiring multiple models providing multiple views.

Architects must ensure view and model consistency.

Services View

Data Flow View

Mode and State View

Logical Functional Decomposition View

Collaboration View

Physical Decomposition View

Information View
Quality Cases

make developer’s’ case for adequate quality of the

justify belief in

Claims

Arguments

Evidence

is developed for

Quality Characteristic

Quality Attribute

Work Product

Quality Case

supports
Architectural Quality Cases

- **System/Subsystem Architecture**
 - makes architects’ case for adequate quality of the

Architectural Claims:
- Architecture Helps System Meet its Quality Requirements

Architectural Arguments:
- Architecture includes Architectural Decisions, Inventions, Tradeoffs, Assumptions, and Rationales

Architectural Evidence:
- Official Architectural Representations (e.g., Architectural Diagrams, Models, Documents) and Witnessed Demonstrations

Quality Characteristic is developed for **Quality Attribute**
Architectural Quality Case Diagram

Goal: Quality Characteristic A
<<claim>>

Goal: Quality Attribute A₁
<<claim>>

Goal: Quality Attribute A₂
<<claim>>

... Goal: Quality Attribute Aₙ
<<claim>>

justifies belief in

Decision 1
<<argument>>

... Decision N₁
<<argument>>

Invention 1
<<argument>>

... Invention N₂
<<argument>>

Tradeoff 1
<<argument>>

... Tradeoff N₃
<<argument>>

Assumption 1
<<argument>>

... Assumption N₁
<<argument>>

Rationale 1
<<argument>>

... Rationale N₃
<<argument>>

supports

Diagram 1
<<evidence>>

... Diagram N
<<evidence>>

Model 1
<<evidence>>

... Model N
<<evidence>>

Document 1
<<evidence>>

... Document N
<<evidence>>

Demonstration 1
<<evidence>>

... Demonstration N
<<evidence>>
Example Architectural Quality Case Diagram

Claim: Architecture Supports Interoperability Goals

Meets Quality Requirements

- Claim: Physical Interoperability
- Claim: Energy Interoperability
- Claim: Protocol Interoperability
- Claim: Syntax Interoperability
- Claim: Semantics Interoperability

Arguments (Architectural Decisions)

- One-Way Connections
- Layered Architecture
- Open Interface Standards
- Service Oriented Architecture (SOA)

Evidence

- Wiring Diagram
- Context Diagram
- Allocation Diagram
- Layer Diagram
- Interoperability Whitepaper

- Fly-By-Wire
- Modular Architecture
- Proxies and Wrappers

Supports

- Hardware Schematics
- Configuration Diagram
- Network Diagrams
- Activity or Collaboration Diagrams
- Vendor-Supplied Technical Documentation

Arguments:

- Protocols justify belief in
- Protocols supports
- Protocols meets quality requirements

Evidence:

- Vendor-supplied technical documentation supports
- Vendor-supplied technical documentation justifies
- Vendor-supplied technical documentation meets

Example Evidence:

- Wiring diagram
- Context diagram
- Allocation diagram
- Layer diagram
- Interoperability whitepaper

Example Arguments:

- Modular architecture
- Proxies and wrappers
- One-way connections
- Layered architecture
- Open interface standards
- Service oriented architecture (SOA)
- Fly-by-wire
Architecture Visions and Vision Components - Definitions

Architectural Vision

one of the more important actual or potential architectural decisions, inventions, or tradeoffs addressing one or more architectural concerns

Architectural Vision Component

one of the more important actual or potential architectural decisions, inventions, or tradeoffs addressing one or more architectural concerns

Note that multiple candidate architectural visions are often created before one is selected and completed to produce the actual architecture
Architecture Visions and Vision Components - Ontology

- Architectural Representations
 - Architectural Descriptions
 - Architectural Visions
 - Architectural Vision Components
 - System Architecture
 - Architectural Decisions
 - Architectural Inventions
 - Architectural Tradeoffs
 - Architectural Assumptions
 - Associated Rationales

Document architects' initial visions of the system architecture, which drives some of the most important parts of the candidate.
Topics

Motivation

MFESA Overview

MFESA Ontology of Concepts and Terminology

MFESA Metamodel of Reusable Method Components

MFESA Repository of Reusable Method Components

- Architectural Work Units and Work Products
- Architectural Workers

MFESA Metamethod

Conclusion
MFESA Metamodel

A Metamodel is a Model of a Model.

MFESA Metamodel defines three Foundational Types of Reusable Method Components.

Based on OPEN Process Framework Metamodel.

Not based on OMG Metamodel.
System Architecture Engineering – Methods and Processes

System Architecture Engineering Method

a systematic, documented, intended way that system architecture engineering should be performed

System Architecture Engineering Process

an actual way that system architecture engineering is performed in practice on an endeavor
Method Engineering Models

- Process Metamodel
- As-Intended Method (Process Model)
- As-Performed Process
- Metamethod Components
- Method Components
- Process Components

specifies models specification instantiation
Method vs. Process

System Architecture Engineering

Method

Components

System Architecture Engineering

Method

documents intended way to perform

is the actual performance of

documents the intended

consists of instances of

documents concrete subtypes of

Architectural Workers

perform

produce

create and modify

Architectural Work Units

Architectural Work Products
MFESA Metamodel of Reusable Method Components

MFESA Repository

- stores the

MFESA Reusable Method Components

- perform

- produce

Architecture Workers

- create and update

Architectural Work Units

- use

Architecture Engineering Tasks

- use

Architecture Engineering Techniques

- Architecture Engineering Discipline

Architecture Work Products

- describe

Architectures

- Architecture Process Work Products

Architecture Representations

- Architects

- Architecture Tools

- membership

Architecture Teams
Topics

Motivation

MFESA Overview

MFESA Ontology of Concepts and Terminology

MFESA Metamodel of Reusable Method Components

MFESA Repository of Reusable Method Components

- Architectural Work Units and Work Products
- Architectural Workers

MFESA Metamethod

Conclusion
MFESA Repository

Stores reusable system architecture engineering method components:

- Architecture Work Units
- Architecture Work Products
- Architecture Workers

Should provide easy access to method components:

- Identification and selection of relevant method components
- Tailoring of selected method components
- Configuration management of method components
Topics

Motivation

MFESA Overview

MFESA Ontology of Concepts and Terminology

MFESA Metamodel of Reusable Method Components

MFESA Repository of Reusable Method Components
 • Architectural Work Units and Work Products
 • Architectural Workers

MFESA Metamethod

Conclusion
MFESA Tasks

T1: Plan and Resource the Architecture Engineering Effort

T2: Identify the Architectural Drivers

T3: Create the First Versions of the Most Important Architectural Models

T4: Identify Opportunities for the Reuse of Architectural Elements

T5: Create the Candidate Architectural Visions

T6: Analyze Reusable Components and their Sources

T7: Select or Create the Most Suitable Architectural Vision

T8: Complete the Architecture and its Representations

T9: Evaluate and Accept the Architecture

T10: Maintain the Architecture and its Representations
Effort by MFESA Task

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>Phase (time)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Plan and Resource the Architecture Engineering Effort</td>
<td>Initiation, Construction, Initial Production, Full Scale Production, Usage, Retirement</td>
</tr>
<tr>
<td>2</td>
<td>Identify the Architectural Drivers</td>
<td>Initiation, Construction, Initial Production, Full Scale Production, Usage, Retirement</td>
</tr>
<tr>
<td>3</td>
<td>Create First Versions of the Most Important Architectural Models</td>
<td>Initiation, Construction, Initial Production, Full Scale Production, Usage, Retirement</td>
</tr>
<tr>
<td>4</td>
<td>Identify Opportunities for the Reuse of Architectural Elements</td>
<td>Initiation, Construction, Initial Production, Full Scale Production, Usage, Retirement</td>
</tr>
<tr>
<td>5</td>
<td>Create the Candidate Architectural Visions</td>
<td>Initiation, Construction, Initial Production, Full Scale Production, Usage, Retirement</td>
</tr>
<tr>
<td>6</td>
<td>Analyze the Reusable Components and their Sources</td>
<td>Initiation, Construction, Initial Production, Full Scale Production, Usage, Retirement</td>
</tr>
<tr>
<td>7</td>
<td>Select or Create the Most Suitable Architectural Vision</td>
<td>Initiation, Construction, Initial Production, Full Scale Production, Usage, Retirement</td>
</tr>
<tr>
<td>8</td>
<td>Complete the Architecture and its Representations</td>
<td>Initiation, Construction, Initial Production, Full Scale Production, Usage, Retirement</td>
</tr>
<tr>
<td>9</td>
<td>Evaluate and Accept the Architecture</td>
<td>Initiation, Construction, Initial Production, Full Scale Production, Usage, Retirement</td>
</tr>
<tr>
<td>10</td>
<td>Maintain the Architecture and its Representations</td>
<td>Initiation, Construction, Initial Production, Full Scale Production, Usage, Retirement</td>
</tr>
</tbody>
</table>
Plan, Prepare, Act, and Check

PLAN

T1: Plan and Resource the Architecture Engineering Effort

PREPARE

T2: Identify the Architectural Drivers
T3: Create the First Versions of most Important Architectural Models
T4: Identify Opportunities for the Reuse of Architectural Elements

CHECK

T9: Evaluate and Accept the Architecture
T10: Maintain the Architecture and its Representations

ACT

T5: Create Candidate Architectural Visions
T6: Analyze Reusable Components and their Sources
T7: Select or Create the Most Suitable Architectural Vision
T8: Complete the Architecture and its Representations
Concurrent MFESA Tasks

- **T3:** Create the First Versions of the Most Important Architectural Models
 - draft architectural models

- **T4:** Identify Opportunities for the Reuse of Architectural Elements
 - potentially reusable architectural elements

- **T5:** Create the Candidate Architectural Visions
 - draft architectural models
 - potentially reusable architectural elements
 - candidate vision components
 - candidate vision components
Architectural Visions - Flow

T3: Create First Versions of Most Important Architectural Models

T5: Create the Candidate Architectural Visions

T7: Select or Create the Most Suitable Architectural Vision

T8: Complete the Architecture and its Representations
MFESA Task 1) Plan and Resource Architecture Engineering Effort

Task 1) Plan and Resource Architecture Engineering Effort ◀
Task 2) Identify the Architectural Drivers
Task 3) Create Initial Architectural Models
Task 4) Identify Opportunities for Reuse of Architectural Elements
Task 5) Create Candidate Architectural Visions
Task 6) Analyze Reusable Components and their Sources
Task 7) Select or Create Most Suitable Architectural Vision
Task 8) Complete the Architecture and its Representations
Task 9) Evaluate and Accept the Architecture
Task 10) Maintain the Architecture and its Representations
MFESA Task 1) Plan and Resource the Architecture Engineering Effort

Goal:

• Prepare the system engineering team to engineer the system architecture and its representations.

Objectives:

• Staff and train system architecture teams to engineer the system architecture.

• Develop and document the system architecture engineering method.

• Develop plans, standards, and procedures for engineering the system architecture.

• Prioritize and schedule the system architecture engineering effort.
MFESA Task 1) Plan and Resource the Architecture Engineering Effort

Inputs:
- Request for Proposal
- System Vision Statement
- System Concept of Operations
- System Requirements Repository
- System Requirements Specification
- Reference Architecture
- Enterprise Architecture
- MFESA References

Steps:
1. Staff the system architecture team(s).
2. Select or instantiate and tailor one or more MFESA-compliant methods.
3. Select architecture modeling methods.
4. Evaluate and select the architecture engineering tools.
5. Provide training in architecture engineering.
6. Develop the system architecture plans.
7. Develop the architecture engineering conventions.
8. Prioritize and schedule the system architecture engineering effort.
9. Identify any architectural risks and opportunities.

Outputs:
- Architecture Team Charters
- Architecture Engineering Conventions
- Architecture Engineering Tool Evaluation Team Charter
- Architecture Engineering Tool Evaluation Report(s)
- Architecture Engineering Training Materials
- Architecture Plan(s)
- Architecture Engineering Schedule
- Architectural Risks and Opportunities
MFESA Task 1) Plan and Resource the Architecture Engineering Effort

Guidelines

- Properly staff the top-level architecture team(s).
- Properly plan the architecture engineering effort.
- Produce and maintain a proper and sufficient schedule.
- Reuse or create appropriate MFESA method(s).
- Select appropriate architecture modeling method(s).
- Select appropriate architecture engineering tools.
- Provide appropriate training.
MFESA Task 1) Plan and Resource the Architecture Engineering Effort

Pitfalls

- Architects produce incomplete architecture plans and conventions.
- Management provides inadequate resources.
- Management provides inadequate staff and stakeholder training.
- Architects lack authority.
- Architects instantiate the entire MFESA repository without tailoring.
- Tool vendors drive architecture engineering and modeling methods.
- Planning and resourcing are unsynchronized.
- Planning and resourcing are only done once up front.
MFESA Task 2)
Identify the Architectural Drivers

Task 1) Plan and Resource Architecture Engineering Effort

Task 2) Identify the Architectural Drivers

Task 3) Create Initial Architectural Models

Task 4) Identify Opportunities for Reuse of Architectural Elements

Task 5) Create Candidate Architectural Visions

Task 6) Analyze Reusable Components and their Sources

Task 7) Select or Create Most Suitable Architectural Vision

Task 8) Complete the Architecture and its Representations

Task 9) Evaluate and Accept the Architecture

Task 10) Maintain the Architecture and its Representations
MFESA Task 2)
Identify the Architectural Drivers

Goal:

• Identify the architecturally significant product and process requirements that drive the development of the system architecture.

Objectives:

• Understand and verify the product and process requirements that have been allocated to the system or subsystem being architected.
• Categorize sets of related architecturally significant requirements into cohesive architectural concerns.
• Provide a set of architectural concerns to drive the:
 — Identification of potential opportunities for architectural reuse.
 — Analysis of potentially reusable components and their sources.
 — Creation of an initial set of draft architectural models.
 — Creation of a set of competing candidate architectural visions.
 — Selection of a single architectural vision judged most suitable.
 — Completion and maintenance of the resulting system architecture.
 — Evaluation and acceptance of the system architecture.
MFESA Task 2)
Identify the Architectural Drivers

Inputs:
- Request for Proposal
- System Vision Statement
- System Concept of Operations
- System Requirements Repository including Relevant Product and Process Requirements
- System Requirements Specification
- System Requirements Evaluation Results
- Security Policy

Steps:
1. Identify and label the architecturally significant requirements.
2. Verify the potentially relevant requirements.
3. Collaborate to fix requirements defects.
4. Identify the architectural concerns.
5. Evaluate and iterate the architectural concerns.
6. Identify any architectural risks and opportunities.

Outputs:
- Sets of Architectural Concerns
- Requirements Metadata
- Architectural Risks and Opportunities
MFESA Task 2)
Identify the Architectural Drivers

Guidelines

- Collaborate closely with the requirements team.
- Notify the requirements team(s) of relevant requirements defects.
- Consider the impact of the architecture on the requirements.
- Respect team boundaries and responsibilities.
- If necessary, clarify relevant requirements with the stakeholders.
- Concentrate on the architecturally significant requirements.
- Quality attributes can be architectural concerns too.
- Formally manage architectural risks.
MFESA Task 2)
Identify the Architectural Drivers

Pitfalls

- All requirements are architecturally significant.
- Well-engineered architecturally significant requirements are lacking.
- Architects rely excessively on functional requirements.
- The architects ignore the architecturally significant functional and process requirements.
- Specialty engineering requirements are misplaced.
- Unnecessary constraints are imposed on the architecture.
- Architects engineer architecturally significant requirements.
- Requirements lack relevant metadata.
- Architects fail to clarify architectural drivers.
MFESA Task 3)
Create Initial Architectural Models

Task 1) Plan and Resource Architecture Engineering Effort
Task 2) Identify the Architectural Drivers

Task 3) Create Initial Architectural Models

Task 4) Identify Opportunities for Reuse of Architectural Elements
Task 5) Create Candidate Architectural Visions
Task 6) Analyze Reusable Components and their Sources
Task 7) Select or Create Most Suitable Architectural Vision
Task 8) Complete the Architecture and its Representations
Task 9) Evaluate and Accept the Architecture
Task 10) Maintain the Architecture and its Representations
MFESA Task 3)
Create Initial Architectural Models

Goal:

• Create an initial set of partial draft architectural models of the system architecture.

Objectives:

• Capture the most important candidate system architectural decisions.
• Provide the most important views and focus areas of the system architecture.
• Ensure that the candidate architectural decisions sufficiently support the relevant architectural concerns.
• Provide a foundation of architectural models from which to create a set of competing candidate architectural visions.
MFESA Task 3)
Create Initial Architectural Models

Inputs:
- Architectural Concerns
- Requirements Metadata

Steps:
1. Identify the relevant architectural structures.
2. Select the appropriate architectural viewpoints, views, and models.
3. Select the appropriate focus areas.
4. Collaborate with specialty engineering groups and other stakeholders.
5. Develop initial partial competing models of the architectural structures.
6. Conditionally allocate the architectural concerns to the underlying component types.
7. Identify the associated potentially relevant technologies.
8. Perform architectural tradeoff analyses.
9. Evaluate the architectural models and associated documentation.
10. Identify any architectural risks and opportunities.

Outputs:
- List of Architectural Views
- List of Architectural Focus Areas
- Set of Initial Partial Draft Architectural Models
- List of Potentially Key Architectural Decisions, Inventions, and Tradeoffs
- Architectural Risks and Opportunities
MFESA Task 3)
Create Initial Architectural Models

Guidelines

• Perform architectural trade-off analysis.
• Reuse architectural principles, heuristics, styles, patterns, vision components, and metaphors.
• Use iterative, incremental, and parallel development.
• Begin developing logical models before physical models and static models before dynamic models.
• Do not overemphasize the physical decomposition hierarchy.
• Use explicitly documented system partitioning criteria.
• Model concurrency.
• Consider the impact of hardware decisions on usability and software.
• Consider human limitations when allocating system functionality to manual procedures.
• Do not start from scratch.
• Formally manage architectural risks.
MFESA Task 3)
Create Initial Architectural Models

Pitfalls

- The architects succumb to analysis paralysis.
- The architects engineer too few architectural models.
- The architects engineer inappropriate models and views.
- The architects construct views but no focus areas.
- Some stakeholders believe that the models are the architecture.
- Inconsistencies exist between models, views, and focus areas.
- The architects use inappropriate architectural patterns.
- System decomposition is performed by the acquisition organization.
MFESA Task 4) Identify Opportunities for Reuse of Architectural Elements

Task 1) Plan and Resource Architecture Engineering Effort
Task 2) Identify the Architectural Drivers
Task 3) Create Initial Architectural Models

Task 4) Identify Opportunities for Reuse of Architectural Elements

Task 5) Create Candidate Architectural Visions
Task 6) Analyze Reusable Components and their Sources
Task 7) Select or Create Most Suitable Architectural Vision
Task 8) Complete the Architecture and its Representations
Task 9) Evaluate and Accept the Architecture
Task 10) Maintain the Architecture and its Representations
MFESA Task 4) Identify Opportunities for Reuse of Architectural Elements

Goal:

• Identify any opportunities to reuse existing architectural work products as part of the architecture of the target system or subsystem being developed. Any opportunities so identified become a collection of reusable architectural element candidates.

Objectives:

• Identify the architectural risks and opportunities for improving the architectures associated with the relevant legacy or existing system(s) should they be selected for reuse and incorporation within the target environment.

• Identify any additional architectural concerns due to the constraints associated with having legacy or existing architectures.

• Understand the relevant legacy or existing architectures sufficiently well to identify potentially reusable architectural elements.

• Provide a set of reusable architectural element candidates to influence (and possibly include in) a set of initial draft architectural models.
MFESA Task 4) Identify Opportunities for Reuse of Architectural Elements

- Prior Version of System
 - Existing Variants of System
 - Pre-existing Architectures
 - Competitors' Systems
 - Product Line of System
 - Reference Architecture
 - Enterprise Architecture
 - Industry Standard Architectures

- Architectural Patterns and Styles
 - Architectural Concerns
 - Architecturally-Significant (e.g., Quality) Requirements
 - Potentially Reusable Architectures
 - Potentially Reusable Architectural Elements
 - Sieve
 - Candidate Reusable Architectural Elements
 - Architectural Risks
 - Architectural Models
 - Pre-existing Architectures
 - Existing Variants of System
 - Prior Version of System
 - Competitors' Systems
 - Product Line of System
 - Industry Standard Architectures
 - Competitors' Systems
 - Reference Architecture
 - Enterprise Architecture

- Potential Reusable Architectural Elements
 - Candidate Architectural Visions
 - Architectural Models
 - Candidate Architectural Components
 - May be reused in
 - May be instantiated as
MFESA Task 4) Identify Opportunities for Reuse of Architectural Elements

Inputs:
- Pre-existing Architectural Representations
- Architectural Patterns
- Documented Risks
- Architectural Concerns

Steps:
1. Identify architectural concerns that may be implemented via reuse.
2. Identify and analyze the architecture of the prior version of system or subsystem.
3. Identify and analyze the architectures of existing variants of system or subsystem.
4. Identify and the analyze architectures of any competing systems or subsystems.
5. Identify and the analyze system’s product line reference architecture.
6. Identify and analyze the organization’s enterprise reference architecture(s).
7. Identify and analyze any Industry standard architecture(s).
8. Identify potentially reusable architectural patterns.
9. Identify candidate potentially-reusable architectural elements.
10. Initiate early relationships with potential suppliers of reusable components.
11. Update the architectural concerns.
12. Identify any architectural risks and opportunities.

Outputs:
- List of Candidate Reusable Architectural Elements
- Updated Architectural Concerns
- Architectural Risks and Opportunities
MFESA Task 4) Identify Opportunities for Reuse of Architectural Elements

Guidelines

• Do not start from scratch.
• Do not be excessively constrained by the past.
• Conform to the enterprise architecture.
• Conform to the product line reference architecture.
• Consider system architecture patterns.
• Support modeling.
• Formally manage architectural risks.
MFESA Task 4) Identify Opportunities for Reuse of Architectural Elements

Pitfalls

• The architects start from scratch.
• The architects ignore past lessons learned.
• The architects over rely on previous architectures.
• The architects select specific OTS components too early.
• The architects assume reuse of architectural components that are not ready.
• The architects assume the reuse of immature technologies.
• Inadequate information exists to determine reusability.
MFESA Task 5) Create Candidate Architectural Visions

Task 1) Plan and Resource Architecture Engineering Effort
Task 2) Identify the Architectural Drivers
Task 3) Create Initial Architectural Models
Task 4) Identify Opportunities for Reuse of Architectural Elements

Task 5) Create Candidate Architectural Visions

Task 6) Analyze Reusable Components and their Sources
Task 7) Select or Create Most Suitable Architectural Vision
Task 8) Complete the Architecture and its Representations
Task 9) Evaluate and Accept the Architecture
Task 10) Maintain the Architecture and its Representations
MFESA Task 5)
Create Candidate Architectural Visions

Goal:

• Create multiple candidate architectural visions of the system architecture.

Objectives:

• Verify that the candidate subsystem architectural visions sufficiently support the relevant architecture concerns.

• Provide a sufficiently large and appropriate set of competing candidate architectural visions from which a single vision may be selected as most suitable.
MFESA Task 5)
Create Candidate Architectural Visions

Inputs:
- Potential Architectural Vision Components
- Architectural Concerns
- Potentially Reusable Architectural Elements
- Architectural Risks and Opportunities

Steps:
1. Identify potentially usable architectural vision components.
2. Create and document the competing architectural visions.
3. Identify vision pros and cons.
4. Verify the architectural visions.
5. Iterate the architectural visions.
6. Identify any new architectural risks and opportunities.

Outputs:
- Potentially Relevant Architectural Vision Components
- Architectural Concern vs. Vision Component Matrix
- Competing Architectural Visions List
- Draft Architectural Vision Documents
- Architectural Risks and Opportunities
MFESA Task 5)
Create Candidate Architectural Visions

<table>
<thead>
<tr>
<th>Architectural Vision Component vs. Architectural Vision Matrix</th>
<th>Candidate Architectural Visions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural Vision 1</td>
<td>Architectural Vision 2</td>
</tr>
<tr>
<td>Component 1</td>
<td>X</td>
</tr>
<tr>
<td>Component 2</td>
<td>X</td>
</tr>
<tr>
<td>Component 3</td>
<td>X</td>
</tr>
<tr>
<td>Component 4</td>
<td>X</td>
</tr>
<tr>
<td>Component 5</td>
<td>X</td>
</tr>
<tr>
<td>Component 6</td>
<td>X</td>
</tr>
<tr>
<td>Component 7</td>
<td>X</td>
</tr>
<tr>
<td>Component 8</td>
<td>X</td>
</tr>
<tr>
<td>Component 9</td>
<td>X</td>
</tr>
<tr>
<td>Component 10</td>
<td>X</td>
</tr>
<tr>
<td>Component 11</td>
<td>X</td>
</tr>
<tr>
<td>Component 12</td>
<td></td>
</tr>
<tr>
<td>Component 13</td>
<td></td>
</tr>
</tbody>
</table>
MFESA Task 5)
Create Candidate Architectural Visions

Example Architectural Concern vs. Vision Component Matrix

<table>
<thead>
<tr>
<th>Architectural Concerns</th>
<th>Architectural Vision Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access Control</td>
<td>++</td>
</tr>
<tr>
<td>Confidentiality</td>
<td>+</td>
</tr>
<tr>
<td>Integrity (Message)</td>
<td>+</td>
</tr>
<tr>
<td>Integrity (Software)</td>
<td>+</td>
</tr>
<tr>
<td>Nonrepudiation</td>
<td>0</td>
</tr>
<tr>
<td>Availability</td>
<td>-</td>
</tr>
<tr>
<td>Cost</td>
<td>++</td>
</tr>
<tr>
<td>Performance</td>
<td>-</td>
</tr>
<tr>
<td>Usability</td>
<td>-</td>
</tr>
</tbody>
</table>
MFESA Task 5)
Create Candidate Architectural Visions

Guidelines

• Identify an appropriate number of candidate architectural visions.
• Complete candidate architectural visions to appropriate level of detail.
• Prepare architectural components for OTS incorporation.
• Formally manage architectural risks.
MFESA Task 5)
Create Candidate Architectural Visions

Pitfalls

• The architects engineer only one architectural vision.
• Management provides insufficient resources.
• Management confuses the architectural vision with the completed architecture.
• Management does not permit architects to make mistakes.
• The architects compare the architectural visions prematurely.
• The architects do not compare the pros and cons of the candidate visions.
MFESA Task 6) Analyze Reusable Components and their Sources

Task 1) Plan and Resource Architecture Engineering Effort
Task 2) Identify the Architectural Drivers
Task 3) Create Initial Architectural Models
Task 4) Identify Opportunities for Reuse of Architectural Elements
Task 5) Create Candidate Architectural Visions

Task 6) Analyze Reusable Components and their Sources

Task 7) Select or Create Most Suitable Architectural Vision
Task 8) Complete the Architecture and its Representations
Task 9) Evaluate and Accept the Architecture
Task 10) Maintain the Architecture and its Representations
MFESA Task 6) Analyze Reusable Components and their Sources

Goal:

• Determine if any existing components are potentially reusable as part of the architecture of the current system or subsystem.

Objectives:

• Identify any existing components that are potentially reusable as part of the architecture of the current system or subsystem.
• Evaluate these components for suitability.
• Evaluate the sources of these components for suitability.
• Provide a set of potentially reusable components to influence (and possibly include in) a set of initial draft architectural models.
MFESA Task 6) Analyze Reusable Components and their Sources

Inputs:
- Potential Reusable Architectural Elements
- Architectural Concerns
- Architectural Risks and Opportunities

Steps:
1. Identify potentially reusable components and their sources.
2. Characterize potentially reusable components and their sources.
3. Evaluate potentially reusable components and their sources.
4. Conditionally select the most suitable reusable components and their sources.
5. Identify any new architectural risks and opportunities

Outputs:
- Market Surveys
- Potentially Reusable Architectural Components List
- Potentially Reusable Component Descriptions
- Architectural Risks and Opportunities
MFESA Task 6) Analyze Reusable Components and their Sources

Guidelines

- Use appropriate decision techniques.
- Perform task concurrently.
- Formally manage architectural risks.
MFESA Task 6) Analyze Reusable Components and their Sources

Pitfalls

• Authoritative stakeholders assume reuse will improve cost and schedule.
• Insufficient information exists for evaluation and reuse.
• Stakeholders have an unrealistic expectation of “exact fit.”
• Developers have little or no control over future changes.
• The source organization (e.g., vendor) fails to adequately maintain a reusable architectural component.
• Legal rights are unacceptable.
• Incompatibilities exist with underlying technologies.
MFESA Task 7) Select or Create the Most Suitable Architectural Vision

Task 1) Plan and Resource Architecture Engineering Effort
Task 2) Identify the Architectural Drivers
Task 3) Create Initial Architectural Models
Task 4) Identify Opportunities for Reuse of Architectural Elements
Task 5) Create Candidate Architectural Visions
Task 6) Analyze Reusable Components and their Sources

Task 7) Select or Create Most Suitable Architectural Vision

Task 8) Complete the Architecture and its Representations
Task 9) Evaluate and Accept the Architecture
Task 10) Maintain the Architecture and its Representations
MFESA Task 7) Select or Create the Most Suitable Architectural Vision

Goal:

- Obtain a single architectural vision for the system or subsystem architecture from the competing candidate visions.

Objectives:

- Ensure that the selected architectural vision has been properly judged to be most suitable for the system or subsystem architecture.

- Provide a proper foundation on which to complete the engineering of the system or subsystem architecture.
MFESA Task 7) Select or Create the Most Suitable Architectural Vision

Inputs:
- Candidate Architectural Visions
- Architectural Risks and Opportunities

Steps:
1. Determine the selection criticality.
2. Determine the required selection resources.
3. Determine the evaluation approach.
4. Evaluate the competing candidate architectural visions.
5. Select the most suitable architectural vision.
6. Optionally create the new most suitable architectural vision.
7. Approve the architectural vision.
8. Identify any new architectural risks and opportunities

Outputs:
- Selected Architectural Vision
- Selection Process Documentation
- Architectural Risks and Opportunities
MFESA Task 7) Select or Create the Most Suitable Architectural Vision

Architectural Concern vs. Architectural Visions Matrix

<table>
<thead>
<tr>
<th>Architectural Concerns</th>
<th>Candidate Competing Architectural Visions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Architectural Vision 1</td>
</tr>
<tr>
<td>Availability</td>
<td>+</td>
</tr>
<tr>
<td>Development Cost</td>
<td>0</td>
</tr>
<tr>
<td>Development Schedule</td>
<td>+</td>
</tr>
<tr>
<td>Interoperability</td>
<td>+</td>
</tr>
<tr>
<td>Performance</td>
<td>+</td>
</tr>
<tr>
<td>Portability</td>
<td>0</td>
</tr>
<tr>
<td>Reliability</td>
<td>+</td>
</tr>
<tr>
<td>Safety</td>
<td>-</td>
</tr>
<tr>
<td>Security</td>
<td>-</td>
</tr>
<tr>
<td>Usability</td>
<td>-</td>
</tr>
</tbody>
</table>
MFESA Task 7) Select or Create the Most Suitable Architectural Vision

Guidelines

- Ensure a commensurate approach.
- Ensure a consistent evaluation approach.
- Ensure complete evaluation criteria.
- Avoid unwarranted assumptions.
- Use common sense when using decision methods to select the most suitable candidate architectural vision.
- Take reuse into account.
- Test reusable architectural component suitability.
- Maintain the architectural vision.
- Formally manage architectural risks.
MFESA Task 7) Select or Create the Most Suitable Architectural Vision

Pitfalls

- Architects use an inappropriate decision method.
- Management provides inadequate decision resources.
- Selecting the most suitable architectural vision is treated as just a technical decision.
- Stakeholders do not understand risks.
- The decision makers are weak.
MFESA Task 8) Complete the Architecture and its Representations

Task 1) Plan and Resource Architecture Engineering Effort
Task 2) Identify the Architectural Drivers
Task 3) Create Initial Architectural Models
Task 4) Identify Opportunities for Reuse of Architectural Elements
Task 5) Create Candidate Architectural Visions
Task 6) Analyze Reusable Components and their Sources
Task 7) Select or Create Most Suitable Architectural Vision

Task 8) Complete the Architecture and its Representations

Task 9) Evaluate and Accept the Architecture
Task 10) Maintain the Architecture and its Representations
MFESA Task 8) Complete the Architecture and its Representations

Goal:

• Complete system or subsystem architecture based on the selected or created architectural vision.

Objectives:

• Complete the architectural models.
• Complete the interface aspects of the architectural.
• Complete the reuse aspects of the architecture.
• Complete the architectural representations.
• Provide a system or subsystem architecture that can be evaluated and accepted by its authoritative stakeholders.
MFESA Task 8) Complete the Architecture and its Representations

Inputs:
- Incomplete Architectural Representations
- Incomplete Architecture

Steps:
1. Complete the draft architectural models of the selected architectural vision.
2. Complete the quality cases for the architectural focus areas.
3. Complete and document the architectural interfaces.
4. Complete the architectural documentation.
5. Address remaining architectural reuse issues.
6. Iterate the architecture.
7. Allocate and trace requirements to the architectural elements.
8. Baseline the architectural representations.
9. Identify any new architectural risks and opportunities

Outputs:
- Complete and Baselined Architectural Representations
- Complete and Baselined Architecture
- Requirements Trace
- Architectural Risks and Opportunities
MFESA Task 8) Complete the Architecture and its Representations

Guidelines

• Develop quality cases as a natural part of the architecture engineering process.

• Architect all relevant types of interfaces.

• Work with the requirements team to provide requirements traceability.

• Formally manage architectural risks.
MFESA Task 8) Complete the Architecture and its Representations

Pitfalls

- Architecture engineering is done.
- Management provides inadequate resources.
- The architectural representations lack configuration control.
- The architecture is not maintained.
- A “beautiful” architecture is frozen solid.
- There is inadequate tool support for architecture maintenance.
MFESA Task 9) Evaluate and Accept the Architecture

Task 1) Plan and Resource Architecture Engineering Effort
Task 2) Identify the Architectural Drivers
Task 3) Create Initial Architectural Models
Task 4) Identify Opportunities for Reuse of Architectural Elements
Task 5) Create Candidate Architectural Visions
Task 6) Analyze Reusable Components and their Sources
Task 7) Select or Create Most Suitable Architectural Vision
Task 8) Complete the Architecture and its Representations

Task 9) Evaluate and Accept the Architecture

Task 10) Maintain the Architecture and its Representations
MFESA Task 9) Evaluate and Accept the Architecture

Goals:

• Monitor and determine the quality of the system or subsystem architecture and associated representations.
• Monitor and determine the quality of the process used to engineer the system or subsystem architecture.
• Provide information that can be used to determine the passage or failure of architectural milestones.
• Enable architectural defects, weaknesses, and risks to be fixed and managed before they negatively impact system quality and the success of the system development/enhancement project.
• Accept the system or subsystem architecture based on the results of the evaluations.
MFESA Task 9)
Evaluate and Accept the Architecture

Inputs:
- Architectural Representations
- Observations of the Architects' Work

Steps:
1. Plan the evaluations.
2. Analyze the architecture.
3. Internally verify the architecture.
4. Independently verify the architecture process.
5. Independently assess the architecture.
6. Validate the architecture.
7. Formally review the architecture.
8. Fix identified architectural defects.
9. Accept the evaluated and updated architecture.
10. Identify any new architectural risks and opportunities.

Outputs:
- Various Architecture Analysis Reports
- Executable Architectural Representation Simulation Results
- Architectural Prototype Test Results
- Architecture Peer Review and/or Inspection Results
- Architecture Assessment Reports
- Architecture Quality Assurance Reports
- Architectural Risks and Opportunities
MFESA Task 9
Evaluate and Accept the Architecture

Tier 1
Assessment Scope

Tier 2
System of Systems
System 1 System 2 System 3 ... System N

Tier 3
Subsystem 1 Subsystem 2 Subsystem 3 ... Subsystem N

Tier 4
Assessment Scope
Segment 1 Segment 2 Segment 3 ... Segment N

Tier 5
Subsegment 1 Subsegment 2 Subsegment 3 ... Subsegment N

Tier 6
Assembly 1 Assembly 2 Assembly 3 ... Assembly N

Tier 7
Subassembly 1 Subassembly 2 Subassembly 3 ... Subassembly N

Tier 8
HW C 1 ... HW C N SW CSCI 1 ... SW CSCI N

Tier 9
HW C 1 ... HW C N SW C 1 ... SW C N

Tier 10
Part 1 ... Part N SW Unit 1 ... SW Unit N
MFESA Task 9) Evaluate and Accept the Architecture

Guidelines

• Use evaluations to support architectural milestones.
• Evaluate continuously.
• Internally evaluate models.
• Perform architecture analysis substeps.
• Collaborate with the stakeholders.
• Tailor software evaluation methods.
• Perform independent architecture assessments.
• Formally review the architecture.
• Verify architectural consistency.
• Perform cross-component consistency checking.
• Perform both static and dynamic checking.
• Set the evaluation scope based on risk and available resources.
• Formally manage architectural risks.
MFESA Task 9)
Evaluate and Accept the Architecture

Pitfalls

- Disagreement exists over the need to perform evaluations.
- Consensus does not exist on the evaluation’s scope.
- It is difficult to schedule the evaluations.
- Management provides insufficient evaluation resources.
- There are too few evaluations.
- There are too many evaluations.
- How good is good enough?
- Evaluations are not sufficiently independent.
- The evaluators are inadequate.
- Evaluations only verify the easy concerns.
- The quality cases are poor.
- Stakeholders disagree on the evaluation results.
- The evaluations lack proper acceptance criteria.
- The evaluation results are ignored during acceptance.
- The acceptance package is incomplete.
MFESA Task 10) Maintain the Architecture and its Representations

Task 1) Plan and Resource Architecture Engineering Effort
Task 2) Identify the Architectural Drivers
Task 3) Create Initial Architectural Models
Task 4) Identify Opportunities for Reuse of Architectural Elements
Task 5) Create Candidate Architectural Visions
Task 6) Analyze Reusable Components and their Sources
Task 7) Select or Create Most Suitable Architectural Vision
Task 8) Complete the Architecture and its Representations
Task 9) Evaluate and Accept the Architecture

Task 10) Maintain the Architecture and its Representations
MFESA Task 10) Maintain the Architecture and its Representations

Goal:

- Maintain the system or subsystem architecture as the architecturally significant requirements change.
- Ensure the continued integrity and quality of the system architecture as the system evolves.

Objectives:

- Eliminate inconsistencies within the system architecture and its representations.
- Eliminate inconsistencies between the system architecture and its representations and:
 - Architecturally Significant Requirements
 - Enterprise Architecture(s)
 - Reference Architecture(s)
 - The Design of architectural components
 - The Implementation of architectural components
- The system architecture and its representations do not degrade over time.
MFESA Task 10) Maintain the Architecture and its Representations

Inputs:
- Architecture
- Architectural Representations
- Change Requests
- Updated Work Products

Steps:
1. Maintain the architecture and its representations.
2. Determine architectural invariants.
3. Identify changes that threaten architectural integrity.
4. Enforce integrity given changes.
5. Identify any new architectural risks and opportunities.

Outputs:
- Relevant Discrepancy Reports
- Relevant Change Requests
- Relevant Change Analysis Reports
- Updated Work Products
- Architectural Risks and Opportunities
MFESA Task 10) Maintain the Architecture and its Representations

Guidelines

• Maintain the architectural representations to maintain architectural integrity.
• Consider entire scope of ensure architectural integrity task.
• Consider the sources of architectural change.
• Protect the architectural invariants.
• Determine the scope of architectural integrity.
• Train the architects and designers.
• Formally manage architectural risks.
MFESA Task 10) Maintain the Architecture and its Representations

Pitfalls

- The architectural representations become shelfware.
- Architecture engineering is done.
- The architecture is not under configuration management.
Topics

Motivation

MFESA Overview

MFESA Ontology of Concepts and Terminology

MFESA Metamodel of Reusable Method Components

MFESA Repository of Reusable Method Components
 • Architectural Work Units and Work Products
 • Architectural Workers

MFESA Metamethod

Conclusion
MFESA Repository – Architecture Workers

Architecture Workers

Architecture Teams

Architects

Tools

membership

use
Architects - Definition

System Architect

the highly specialized role played by a systems engineer when performing system architecture engineering tasks to produce system architecture engineering work products
Types of Architects - Ontology

- Organizational Chief Architect
- System of Systems Chief Architect
- System Chief Architect
- Subsystem Lead Architect
- System Engineer
- System Architect
- Software Engineer
- Software Architect
- Hardware Engineer
- Hardware Architect
- Engineer
- Architect
Architects – Primary Responsibilities

Determine and Assess Impact of the Architectural Drivers and Concerns
Develop Architecture and Architectural Representations
Analyze Architecture using Architectural Representations
Evaluate Architecture and Architectural Representations
Maintain Architecture and Architectural Representations
Ensure Architectural Integrity
Architects – Organizational Responsibilities

Lead Architectural Activities
Manage Performance of Architecture Engineering Tasks
Be an Architecture Advocate
Be a Stakeholder Advocate
Instantiate and Tailor Architecture Engineering Method
Select and Acquire Architecture Engineering Tools
Train Architecture Stakeholders
Evaluate Architecture Method and Process
Interface and Collaborate with Architecture Stakeholders
Architects – Authority

Determine architecture engineering method

Determine architectural work products to produce including models, documents, and architectural prototypes

Select and acquire architecture engineering tools

Determine architecture

Instantiate evaluation of Off-The-Shelf architectural components
System Architecture Team - Definition

System Architecture Team

a team responsible for developing and maintaining all or part of a system’s architecture
Types of Architecture Teams - Ontology

- Top-Level Architecture Team
- Specialty Engineering Architecture Teams
- Software Architecture Teams
- Prime Contractor / Integrator Architecture Teams
- Supplier / Vendor Architecture Teams
- System of Systems Architecture Team
- Subsystem Architecture Teams
- Hardware Architecture Teams
- Customer Architecture Teams
- Subcontractor Architecture Teams
- Product Architecture Teams
- Reference Architecture Teams
- Formal Architecture Teams
- Ad hoc Architecture Teams
- System Architecture Teams
- Reference Architecture Teams
- Membership
- System Architect
- Software Architect
- Hardware Architect
- Specialty Engineer
- Requirements Engineer
- Testing Engineer
- System Engineer
- Software Engineer
- Hardware Engineer
- Quality Engineer
- Designer
- Subject Matter Expert

Software Engineering Institute | Carnegie Mellon

MFESA Tutorial
Donald Firesmith, 12 March 2008
© 2008 Carnegie Mellon University
System Architecture Tools - Definition

System Architecture Tool

any thing that assists with the production, coordination and maintenance of architectural work products

Many types:

- Whiteboard
- Image Capturing Device
- Word Processor
- Spreadsheet
- General-Purpose Drawing Tool
- Graphical Modeling Tool
- CAD/CAM (Computer Aided Design/Computer Aided Manufacturing)
- Simulation Tool
- Configuration Management Tool
- Requirements Engineering Tool
- Information Architecting Tool
- Business Process Modeling Tool
- Mass/Size/Geometry Modeling Tool
- Software Architecture Tool
Topics

Motivation

MFESA Overview

MFESA Ontology of Concepts and Terminology

MFESA Metamodel of Reusable Method Components

MFESA Repository of Reusable Method Components

• Architectural Work Units and Work Products
• Architectural Workers

MFESA Metamethod

Conclusion
MFESA Metamethod - Tasks

Method Needs Assessment

Number of Methods Determination for each method

Method Reuse Type Determination

Method Selection

Method Reuse

Method Construction

Method Component Selection

Method Component Tailoring

Method Component Integration

Method Documentation

Method Verification

Method Publication

Method Tailoring
Topics

Motivation

MFESA Overview

MFESA Ontology of Concepts and Terminology

MFESA Metamodel of Reusable Method Components

MFESA Repository of Reusable Method Components
 • Architectural Work Units and Work Products
 • Architectural Workers

MFESA Metamethod

Conclusion
Key Points to Remember

System architecture and system architecture engineering are critical to success.

MFESA is not a system architecture engineering method.

Architectural quality cases make the architects’ case that their architecture sufficiently supports the architecturally significant requirements.

It is critical to capture the rationale for architectural decisions, inventions, and trade-offs.

Architects should keep their work at the right level of abstraction.

Reuse has a major impact on system architecture engineering.

Architecture engineering is never done.
Future Book

Donald Firesmith (SEI) with Peter Capell (SEI), Dietrich Falkenthal (MITRE), Charles Hammons (SEI), DeWitt Latimer IV (USAF), and Tom Merendino (SEI)

Auerbach Publishing

2008
Potential Future Tools

MFESA Methodologist Process Engineer User

User Interface

Component Browser Component Editor Process Consultant Method Builder Method Browser Method Editor Method Simulator Consistency Checker

MFESA Repository

MFESA Metamodel Official Repository Organizational Repository Endeavor Repository Reusable Method Components Reusable Methods Endeavor Method Components Endeavor Method

Security CM

Software Engineering Institute Carnegie Mellon

MFESA Tutorial
Donald Firesmith, 12 March 2008
© 2008 Carnegie Mellon University

136
Questions?

For more information, contact:

Donald Firesmith
Acquisition Support Program
Software Engineering Institute
dgf@sei.cmu.edu