Imaging Services on the Grid as a Product Line: Requirements and Architecture

M. ACHER, Ph. COLLET, Ph. LAHIRE, J. Montagnat

Workshop SOAPL 2008
September 8th
Context: Services for the Grid

Grid

sharing data, algorithms
computation power, data-intensive

Workflows for the e-Science Grid
process chain, pipeline, data flow
reuse and compose (black) boxes

Implemented as Services
Requirements Overview

Functional
Format: DICOM
Acquisition Model: MRI
Anatomic Structure: Brain
Noise: Not significant

QoS
Accuracy: 80%
Security: None
Reliability: 50%
Execution time: Not specified

Services for image segmentation
S1
S2

Functional
Format: DICOM
Acquisition Model: MRI
Structure Anatomique: Stomach
Bruit: Dedicated to noisy images

QoS
evaluation: Statistical
Accuracy: 90%
Reliability: 30%

Functional
Format: DICOM
Acquisition Model: MRI
Structure Anatomique: Brain
Bruit: Noise sensitive

QoS
evaluation: Statistical
Accuracy: 85%
Reliability: 50%
Composing Services on the Grid

How to deploy Grid Services?
- needs fine-grained information

How to manage QoS (Quality of Service)?
- such as execution time, availability, reliability, etc.

To give information to ...
- workflow engine, software architect, scheduler

Our position: a variability problem!
From Service to Product Line (1)
From Service to Product Line (2)
Functional Variability

extract: inputs

Magnetic Resonance Imaging
Acquisition Model
MRI = MRI T2
Resolution
Spatial Resolution
Dimension = 2D
color = B&W
Noise = none
Anatomic Structure = brain
Format = DICOM
QOS Variability

How to **caracterize**

How to **measure**

How to **compute**
QOS description : example

Metric
measurable = true
unit = %
comparable = true
type = numeric

Dimension
accuracy = high
time = any
...

Computation
dynamic = true
rely_on = output
accuracy = good

Measurable

QoS Property

Metric

Value Type

Comparable

Unit

% = false

Numeric

Operator

<=

Accuracy

Dynamic

Output

% = true

Conditions

Output

Output

Output

Output
Segmentation: refining classification

QoS depends on application domain:
- goal of segmentation
- body region
- imaging protocol

“A particular segmentation may have high performance in determining the volume of a tumor in the brain on an MRI image,
... but may have low performance in segmenting a cancerous mass from a mammography scan of a breast”

Dimensions: time and space complexity, accuracy, robustness, precision, specificity, sensibility

Interdependency between QoS and Computation of QoS:
- costly but precise
- quick but uncertain
- evaluation has a QoS too
Towards SPL: big picture
Towards Service product line

Grid workflow expert

Behaviour + QOS + variability

Service Product Line segmentation service

Service Product Line registration service

Service Metamodel
QoS Metamodel
Grid Metamodel

Service Repository

Medical imaging computation expert

Workflow

One Workflow
An MDE Approach

Equipping Service/Workflow with meta information
- A common core (QOS & service metamodels)
- Specific branches

Building the SPL
- Describing a generic Domain-Specific service / workflow
- Specifying composition protocol of one service
- Allow to address different workflow
- Includes also variability

Approach
- Model Driven Engineering (MDE)
- Platform independent, abstraction
- Model transformation and/or model composition
An MDE Approach

Model-Driven Engineering

Workflow? Service Composition

Model abstraction of services

Model-Driven Engineering

Workflow?

Service Composition

eHealth domain

Instance of the SPL

transformation

Platform dependent

GRID Engine
On-going Work

- QoS multi-views
 - experts collaboration
 - from end users to services

- How to infer a SPL?

- Derivation process
 - who for the reasoning process?
 - heuristics needed

- From Service to workflow
From Service to Workflow

- Grid workflow expert
- Service Repository
- Behaviour + QOS + variability
- Service Metamodel
- QoS Metamodel
- Medical imaging computation expert
Questions?