
Neglected Aspects of 
Software Architecture

G Todd Kaiser
Chief Architect, Government Systems
Raytheon Intelligence & Information Systems
303-344-6915
gtkaiser@raytheon.com

Copyright © 2007 Raytheon Company. All rights reserved.
Customer Success Is Our Mission is a trademark of Raytheon Company.

4/30/2007 Page 2

An Architect’s Field of View
Most architects of software-
intensive systems come from the 
trenches of system development:
– Software developers
– Hardware developers
– System Administrators
– Database Designers
Their field of view is usually limited 
to that which they cultivated in the 
trenches:
– System Structure
– System Behavior
– System Data

Data

Structure

Behavior

Architect’s Technical Field of View

Field of View is Shaped By Our Early ExperiencesField of View is Shaped By Our Early Experiences

NOTE: Size of “Data” in FOV May Be Exaggerated!



4/30/2007 Page 3

Limited Field of View
Many Architects Focus on 
Technical Aspects of Architecture 
Only
Technical Aspects of Architecture 
Affect Many Non-Technical Areas
– Managerial
– Contractual
– Financial
Non-Technical Aspects are 
Peripheral to the Technical 
Aspects
Peripheral Aspects and Technical 
Aspects Are Symbiotic In Nature

Architects Often Ignore Non-Technical AspectsArchitects Often Ignore Non-Technical Aspects

Architect’s Field of View Is 
Often Limited

Data

Structure

Behavior

4/30/2007 Page 4

“Collateral Damage”
Lack of Peripheral Vision Can Lead 
to “Collateral Damage”
– Cost overruns
– Poor Schedule Performance
– Test & Integration Problems
– Project Cancellation
– Litigation
Damage Caused Can Be So Great 
That Even the Best Technical 
Architecture Will Fail
Damage Usually Manifests As 
Constraints Imposed by the 
Technical Aspects of the 
Architecture

Collateral Damage Can Doom An ArchitectureCollateral Damage Can Doom An Architecture



4/30/2007 Page 5

Managerial Aspects
Management Provides Vital 
Enablers:
– Staff, facilities, communication, etc.
– Schedules
– Advocacy
– Logistics
These enablers are DIRECTLY 
affected by architecture
– Complexity dictated by architecture 

drives staffing requirements
– Structure of architecture drives 

logistics, schedules, and teaming 
arrangements

– Breadth of architecture affects 
communication within development 
teams

Managerial

Data

Structure

Behavior

Complex Architectures Can Prove to be UnmanageableComplex Architectures Can Prove to be Unmanageable

4/30/2007 Page 6

Financial Aspect
Development of architectures 
requires funding
– Labor, licenses, hardware, facilities
Highly Coupled Architectures force 
financial constraints:
– These architectures usually require 

lots of funding over short periods of 
time

Loosely Coupled Architectures 
provide financial flexibility
– The highly modular nature allows 

development of pieces of the 
architecture over longer periods of 
time

Structure of Architecture Can Handcuff FundingStructure of Architecture Can Handcuff Funding



4/30/2007 Page 7

Contractual Aspect
The Structure of an Architecture can 
affect contracts with:
– Customers
– Vendors
– Teammates
Architectures with many-to-many 
dependencies cause complex contract 
issues:
– Work is not easily divided amongst 

teammates and vendors
– Responsibilities for requirement 

fulfillment can be unclear
Acceptance of a highly coupled 
architecture can be tricky
– Acceptance might have to wait until all 

pieces are built – extending work on 
pieces that could otherwise finish early

Contractual

Data

Structure

Behavior

Complicated Structures Cause Complex Contractual IssuesComplicated Structures Cause Complex Contractual Issues

4/30/2007 Page 8

Example #1 – Managerial Aspect
CORBA Based Architecture
– Two architectures were created, both with a 

great emphasis on the “plug and play” nature 
of CORBA

– CORBA IDL would define interfaces for 
functionality, allowing specific 
implementations to be “plugged in”

Problem: CORBA is a complicated 
technology requiring highly-skilled 
developers
– One architecture did not recognize this 

problem, causing a lack of acceptance of 
their architecture

– Other architecture recognized the lack of 
skilled developers in the organization and 
minimized the use of CORBA

Software Components “Easily”
Plug Together

Architectures Must Accommodate Organizational ConstraintsArchitectures Must Accommodate Organizational Constraints



4/30/2007 Page 9

Example #2 – Contractual Aspect
Non-traditional Structure
– Architecture was created where small 

pieces were handed off to separate 
development organizations

– Component responsibility was based on 
each development organization’s area of 
expertise

– Better organizational alignment was 
avoided in order to optimize the software 
architecture

Problem: Each development 
organization depended upon each 
other and was responsible to each 
other
– Made contractual relationships very tricky
– Optimization gained was more than 

offset by contractual complexity

System

Component A Component B

Component C

Sub-component 1

Sub-component 2

Sub-component 3

Sub-component 1

Sub-component 2

Sub-component 3

Sub-component 1

Sub-component 2

Colors Indicate Responsibility

Architectures Must Accommodate Work-Share ConsiderationsArchitectures Must Accommodate Work-Share Considerations

4/30/2007 Page 10

Solutions
Engage all the stakeholders
– Managers, contract personnel, schedulers and planners, 

controllers/business operations personnel
– Engage these people early and often
– Learn their concerns and keep them in mind while developing your

architectures
Architecture Development is a Two-Way Street!
– Don’t let these “other” aspects be the sole driver for your architecture!

If you need to make a change that might upset the apple cart, do it!
Engage these stakeholders, get them on board with the change, help them 
become part of the solution
Don’t let things like work-share undermine your architecture

Architecting is more than just arranging lines and boxes
– Being a communicator, negotiator, and facilitator are very necessary!

Architecture is More Than Just TechnologyArchitecture is More Than Just Technology



4/30/2007 Page 11

Conclusions
Architecture is more than just the structure, behavior and 
data in a system
Managerial, Contractual, and Financial aspects of an 
architecture are equally important
These “other” aspects can make or break your architecture 
unless you consider the “collateral damage”
Engage all the stakeholders of your architecture, not just the 
technology people

Architecture is More Than Just TechnologyArchitecture is More Than Just Technology

4/30/2007 Page 12

Biography
G. Todd Kaiser

Todd Kaiser is the Chief Architect for the Government Systems product line of Raytheon’s 
Intelligence and Information Systems business. Todd is responsible for the technological 
aspects of program execution in the area of architecture and software development. The 
Government Systems business area, based in Aurora, Colorado, builds and maintains 
ground systems for National Space Systems. In addition, Todd is on staff to the Manager 
of Software Engineering in Aurora and a member of the Rocky Mountain Engineering 
Software Council. His research and work on the Software Council extends the knowledge 
and capability of the software discipline and forms the basis of newly developed 
architectures, concepts, theories, methodologies and products. 

Todd has been working in the National Space Systems arena for the last 12 years for the 
former Hughes Aircraft Company and now Raytheon. Starting in software development, 
Todd has developed software in the area of flight dynamics, telemetry and commanding, 
and mission scheduling. He has also worked in the area of ground systems engineering, 
developing concepts of operation, requirements, and ground systems architecture. Todd 
holds a B.S. in physics and mathematics and an M.S. in computer science from the 
University of Denver. 


