Applying Software Architecture Principles in a DoD Acquisition

Software in Acquisition Workshop
October 2007
Presentation Overview

Brief background of the Common Link Integration Processing (CLIP) program

Discuss software architecture principles and approach used to support CLIP’s goals and objectives in the acquisition

Lessons learned and resulting program impacts from applying software architecture guidelines in the acquisition
CLIP Program Background
CLIP Background

Cooperative Navy and Air Force program to develop common tactical data link (TDL) message processing software for air, ship, and shore platforms

Provides non-invasive TDL functionality for TDL-disadvantaged platforms

Facilitates communications between TDLs and IP-based communications to enable Network Centric Warfare

Developed in 4 increments with increasing message processing and host platform interfaces

Open, layered architecture design is Software Communication Architecture (SCA) compliant and can be hosted on multiple computing environments
CLIP Business Drivers and Goals

Provide common communication software and platform interface that are data link independent
Insulate host platform from changes to terminal/radio and TDL standards
Enhance interoperability
Lower cost and faster time to fielding
Architecture-centric development to achieve key system qualities
Software product line approach to enable strategic software reuse
Software Architecture Principles and Approach Used for CLIP
Software Architecture in Acquisition

There are many reasons to focus on software architecture during an acquisition:

- Provides early visibility into key design decisions and constraints that drive cost and schedule of entire software development effort
- Provides a framework to identify and mitigate risks
- Provides a link to business drivers
- Provides visibility needed to optimize/guide use of limited program resources

Software architecture techniques can be used throughout the acquisition cycle:

- Realize more benefits by being proactive and starting early (pre-RFP)
- Focus should be on an architecture-centric acquisition approach
The Cone of Uncertainty

Software Architecture Principles

Focus on software quality attributes

• Stakeholders discussing, clarifying, and prioritizing non-functional requirements

Realization that Software Architecture is Key

• Embodies the early design decisions that addresses the quality attributes

Evaluation of the Software Architecture

• Provides early risk reduction

Documentation of the Architecture

• Provide a common structure for software designers to develop from

Risk Management

• Risk identification and reduction

Training

• Educate both program office and contract personnel
Architecture-centric Approach

Pre-Contract planning

- Development of a CLIP acquisition timeline
- DoD 5000 Acquisition Documents for Milestone B
- CDRL definition

Contract technical monitoring

- Evaluation/Appraisal techniques
- Risk management
- CDRL review
SEI Techniques Used

Acquisition Planning Workshop (APW): A structured forum for key acquisition stakeholders to understand a program’s acquisition approach and current status, and proactively explore potential ways for reducing acquisition risk via a facilitated technical interchange.

Quality Attributes Workshop (QAW): A facilitated method for engaging system stakeholders early in the lifecycle, to discover the business and mission drivers and system quality attributes that drive the system and software architectural design.

Architecture Tradeoff Analysis Method (ATAM®): A method for conducting a collaborative evaluation to assess the consequences of architectural decisions in light of quality attribute requirements and business and mission goals.

Software Architecture Training
The ATAM-based evaluation should cover the ability of the architecture to support future increments. When detailed design is complete, the software architecture is documented (SAD). Increment 1. Increment 2. Increment 3. Joint Training in Software Architecture and ATAM Evaluation. Summarize Architecture Evaluation. Technical Proposals. The QAW is conducted with government stakeholders. This QAW is conducted with government stakeholders. RFP Preparation.
Overview of Acquisition Planning Workshop

Understand Elicit Explore Focus

- Operational Need and System Concept
- Acquisition Objectives
- Acquisition Approach and Progress
- Acquisition Organizations and Stakeholders
- Drivers and Constraints
- Issues and Concerns
- Software Acquisition Planning Aspects
- Lessons Learned
- Potential Technology Application
- Risk Mitigation Strategies
- Action items And Next Steps
Pre-RFP QAW

Opportunity for government acquisition stakeholders to meet face-to-face

Forum to stimulate development and refinement of requirements (functional and non-functional)

Gain stakeholder buy-in of system being acquired and its quality attributes

Outputs were used to

- Refine a previously developed concept for the CLIP architecture
- Identify requirement areas that needed additional work
- Develop technical evaluation questions and criteria for the RFP
Key DoD 5000 Acquisition Documents

Acquisition Strategy/Plan (AS/AP)
Test and Evaluation Master Plan (TEMP)
Source Selection Plan (SSP)
System Engineering Plan (SEP)
Request for Proposal (RFP)
Request for Proposal - 1

Statement of Work (SOW)

- IEEE/EIA 12207 Software Life Cycle Processes
- Capability Maturity Model Integration (CMMI)
- Quality Attribute Workshop (QAW)
- Architecture Tradeoff Analysis Method (ATAM)

System Requirements Document (SRD)

- Identification of quality attributes
- Specification of a reference architecture
Request for Proposal - 2

Section B

- Identified program milestones and associated exit criteria with ties to award fee

Sections L and M

- Program Management Plan (PMP), Integrated Master Schedule (IMS), Risk Management Plan (RMP)
CDRL Definition

IEEE/EIA 12207 Software Life Cycle Processes

<table>
<thead>
<tr>
<th>Process implementation</th>
<th>Software Integration</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Requirements Analysis</td>
<td>Software Qualification Testing</td>
</tr>
<tr>
<td>System Architectural Design</td>
<td>System Integration</td>
</tr>
<tr>
<td>Software Requirements Analysis</td>
<td>System Qualification Testing</td>
</tr>
<tr>
<td>Software Architecture Design</td>
<td>Software Installation</td>
</tr>
<tr>
<td>Software Detailed Design</td>
<td>Software Acceptance Support</td>
</tr>
<tr>
<td>Software Coding and Testing</td>
<td></td>
</tr>
</tbody>
</table>
CLIP Timeline for Key Documents
Contract Monitoring Activities

Risk Management Plan
Joint training
Quality Attribute Workshop
CDRL delivery and review
Architecture Tradeoff Analysis Method
The ATAM-based evaluation should cover the ability of the architecture to support future increments. When detailed design is complete.
Risk Management

The Risk Management Plan was the first CDRL submitted and signed off on because of its importance to the program

Joint risk management process

Monthly Risk Review Boards

Open communication (risk is not a 4-letter word)

Provides the forum to identify, gain agreement on, and implement mitigation strategies to address (architecture) risks

Value to the program by providing visibility to other program offices and senior management
Post-contract Award QAW

Helped to gain a shared vision of what CLIP was to be

Stimulated refinement of requirements (functional and non-functional) provided in the SOW and the SRD

Helped stakeholders to better understand the roles and responsibilities of the IPTs which had been formed

Facilitated communications between the teams

Prioritized outputs were used as a basis to make decisions in the software architecture and design documentation
CDRL Delivery and Review

Delivery aspects of CDRLs

- Frequency
- Date of First Submission
- Date of Subsequent Submission are filled in

Ability of the program office to support the reviews

How are communications between CDRL developers and the associated program office IPT representatives?

The review process was revised between PDR and CDR milestones to improve the process to make sure the content of the documents satisfied the expectations of both sides.
Conceptual Flow of ATAM

- Business Drivers
- Quality Attributes
- Scenarios
- Architectural Approaches
- Architectural Decisions
- Risks
 - Tradeoffs
 - Sensitivity Points
 - Non-Risks
 - Risk Themes

Distilled into QAW (Quality Assurance and Validation) Analysis.
Lessons Learned and Resulting Program Impacts
Lessons Learned

Cost realization of proposals – Differentiation between systems developed with an architecture-centric focus and those that were not and how that affects software estimation and productivity factors

Source selection plan – Clear description of how technical evaluation criteria will be evaluated

Number of CDRLs and which are important – Limited government resources that need to focus on 3-4 keys areas

Having a concept of a technical solution – Use of a reference architecture for the RFP

Proposal presentations – Importance of having verbal and visual information supporting the proposal via use of scenarios

Direct team focus on: risk management, architecture evaluation, interface control, measurement and analysis
Mr. Thomas Ryan, the former CLIP Assistant Program Manager, was pleased with the close support the SEI has provided and with the quality and relevance of the technologies being applied to the program. “Had we not incorporated plans for addressing software architectural issues up-front, we would have been at risk of having to make major changes downstream in the program, which would substantially raise the costs for both us and the participating programs,” he commented.

Mr. Ryan stated, “SEI is the best kept secret in the DoD!”
Summary

Pro-active planning at the RFP stage lays the foundation for the contract performance and monitoring phase.

Cost proposals are very difficult to develop and even more difficult to provide cost realism to, so the program office needs to convey as clear and complete a picture of the acquisition, as possible, in the RFP.

Identify the three or four most important items the government needs to accomplish during the acquisition and focus on them.

Communication between the program office and the contractor’s team needs to be continuous after contract award, like risk management, so that expectations can be set appropriately within the program, as well as for those external to the program.
Questions
Contact Information

Tim Morrow
4500 Fifth Avenue
Pittsburgh, PA 15668
412.434.3797

tbm@sei.cmu.edu
http://www.sei.cmu.edu