Working With Flow Data in an Academic Environment in the DDoSVax Project at ETH Zuerich

Arno Wagner

wagner@tik.ee.ethz.ch

Communication Systems Laboratory
Swiss Federal Institute of Technology Zurich (ETH Zurich)
Outline

1. Academic users
2. Context: The DDoSVax project
3. Data collection and processing infrastructure
4. Software / Tools
5. Technical lessons learned
6. Other lessons learned

Note: Also see my FloCon 2004 slides at http://www.tik.ee.ethz.ch/~ddosvax/ or Google("ddosvax")
Academic Users

- PhD Researchers
- Students doing Semester-, (Diploma-) and Master-Theses
- (Almost) no forensic work

Users will write their own tools
⇒ Support is needed to make them productive fast:

- Software: Libraries, example tools, templates
- Initial explanations
- Advice and some supervision
The DDoSVax Project

http://www.tik.ee.ethz.ch/~ddosvax/

- Collaboration between SWITCH (www.switch.ch, AS559) and ETH Zurich (www.ethz.ch)

- Aim (long-term): Near real-time analysis and countermeasures for DDoS-Attacks and Internet Worms

- Start: Begin of 2003

- Funded by SWITCH and the Swiss National Science Foundation
The Swiss Academic And Research Network

- .ch Registrar
- Links most Swiss Universities
- Connected to CERN
- Carried around 5% of all Swiss Internet traffic in 2003
- Around 60.000.000 flows/hour
- Around 300GB traffic/hour
The SWITCH Network
SWITCH Peerings

Multiple Gigabit Ethernet links over SWITCHlambda's redundant dark fiber infrastructure

Global transit by international carriers
Private peering with international research networks
Public Internet eXchange with bilateral peerings
SWITCH Traffic Map

Legend [Mbps]
0 2 3 4 7 11 18 28 46 74 119 192 310

SWITCH traffic weather map
2004-07-18 17:30 average of last 00:30 hours
NetFlow Data Usage at SWITCH

- Accounting
- Network load monitoring
- SWITCH-CERT, forensics
- DDoSVax (with ETH Zurich)

Transport: Over the normal network
Collaboration Experience

- DDoSVax inspired SWITCH to create their own short-term NetFlow archive for forensics.
- Quite friendly and competent exchange with the (small, open minded) SWITCH technical and security staff.
- SWITCH may want to use our archive in the future as well.
- Main issue with SWITCH: Privacy concerns.
Network Dynamics

- No topological changes with regard to flow collection so far.
- Collection quality got better due to better hardware (routers).
- IP space (AS559) was a bit enlarged in the last year.
Collection Data Flow

SWITCH

2 * 400kB/s UDP data

GbE

ezmp1

GbE

2 * 400kB/s UDP data

GbE

ezmp2

GbE

4 files/h

GbE

aw3

GbE

4 files/h compressed

GbE

Jabba

GbE

ETHZ Infrastructure

GbE

Dual-PIII 1.4GHz

55GB HDD

FE

Cluster "Scylla"

Arno Wagner, ETH Zurich, FloCon 2005 – p.11
NetFlow Capturing

- One Perl-script per stream
- Data in one hour files

Critical: (Linux) socket buffers:
- Default: 64kB/128kB max.
- Maximal possible: 16MB
- We use 2MB (app-configured)
- 32 bit Linux: May scale up to 5MB/s per stream
Capturing Redundancy

- Worker / Supervisor (both demons)
- Super-Supervisor (cron job)
 For restart on reboot or supervisor crash
- Space for 10-15 hours of data on collector

No hardware redundancy
Long-Term Storage

Unsampled flow-data since March 2003
Bzip2 compressed raw NetFlow V5 in one-hour files

- We need most data-fields and precise timestamps
- We don’t know what to throw away
- We have the archive space
- Causes us to be CPU bound (usually)
 ⇒ Makes software writing a lot easier!
Computing Infrastructure

The "Scylla" Cluster

Servers:

- aw3: Athlon XP 2200+, 600GB RAID5, GbE
does flow compression and transfer
- aw4: Dual Athlon MP 2800+, 3TB RAID5, GbE
- aw5: Athlon XP 2800+, 400GB RAID5, GbE

Nodes:

- 22 * Athlon XP 2800+, 1GB RAM, 200GB HDD, GbE

Total cost (est.): 35 000 USD + 3 MM
Software

- Basic NetFlow libraries (parsing, time handling, transparent decompression, ...)
- Small tools (conversion to text, statistics, packet flow replay, ...)
- Iterator templates: Provide means to step through one or more raw data files one a record-by-record basis
- Support libraries: Containers, IP table, PRNG, etc.

All in c (gcc), commandline only. Most written by me. Partially specific to SWITCH data.
Lessons Learned (Technical)

Software:

- KISS is certainly valid.
- Unix-tool philosophy works well.
- Human-readable formats and Perl or Python are very useful for prototyping and understanding.
- Add information headers (commandline, etc.) to output formats (also binary)!
- Take care on monitoring the capturing system.
- Keep a measurement log!
Lessons Learned (Technical)

Hardware/OS:

- Needed much more processing power and disks storage than anticipated
 ⇒ Plan for infrastructure growth!
- Get good quality hardware.
Lessons Learned (Technical)

Capturing and storage: Bit-errors do happen! We use `bzip2 -1` on 1 hour files (about 3:1)

- Observed: 4 bit errors in compressed data/year
- 1 year ~ 5TB compressed $\Rightarrow 1$ error / 1.2×10^{12} Bytes
- `bzip2 -1` \Rightarrow loss of about 100kB per error
 Unproblematic to cut defect part
Note: `gzip`, `lzop`, ... will loose *all* data after the error
- Source of errors: RAM, busses, (CPU), (disk), (Network)

Arno Wagner, ETH Zurich, FloCon 2005 – p.19
Lessons Learned (Technical)

Processing: Bit Errors do happen!

- Scylla-Cluster used OpenMosix ⇒ Process migration and load balancing
- Observed problem: Frequent data corruption.
- Source: A single weak bit in 44 RAM modules
 Diag-time with memtest86: > 3 days!
 Process migration made it vastly more difficult to find!
- No problems with disks, CPUs, network, tapes.
- Some problems with a 66MHz PCI-X bus on a server.
Lessons Learned (Users)

Students need to understand what they are doing.

- Human-readable and scriptable output helps a lot!
- Clean sample code is essential.
- Tell students what technical skills are expected clearly before they commit to a thesis.
- Make sure students code cleanly and that they understand algorithmic aspects.
Thank You!