Correlations between quiescent ports in network flows

Joshua McNutt & Markus De Shon
{jmcnutt,mdeshon}@cert.org
September 21, 2005
What is a quiescent port?

A TCP or UDP port not in regular use

- No assigned service
- Obsolete service
- Ephemeral port with no active service
Port summary data

• Flows too detailed for some analysis
• Full flow data huge, slow interactive analysis
• Which flows are of interest?
• Therefore: Hourly summaries populate a database
 ▪ # Flows
 ▪ # Packets
 ▪ # Bytes
 ▪ Per port (TCP/UDP)
 ▪ Per ICMP Type and Code
 ▪ Per IP Protocol
 ▪ “Incoming” and “Outgoing”
Anomaly detection

There are many kinds of “anomaly detection”
Here we mean: statistical anomaly detection
Problem: Network data does not behave
- Self-similarity
- “Infinite” variance
- Not normal distributions

Problem: Data is noisy
- Vertical scanning
- Return traffic from web requests, outgoing email
- Other behavior masked
Correlation

• Our realization:
 • Vertical scanning leads to correlations between server ports
 • Web & email return traffic leads to correlations between ephemeral ports
 • Other kinds of activity may concentrate on only one port
 ▪ Horizontal scanning
 ▪ Backdoor activity
 ▪ Worms
Robust correlation

Any anomaly detection method has a problem:

- What if the activity of interest occurs during the learning period?
- The model of “normal” is skewed

Solution: exclude the outliers

“Robust correlation”

- Exclude 5% most extreme outliers (Rousseew and Van Zomeren 1990)
- Calculate correlations based on remainder
Robust correlation matrix

Take time series for ports (e.g. 0-1023)
Calculate every robust correlation $C(i,j)$

$C(i,j)$ is symmetric, and diagonal == 1

- $C(i,i) == 1$
- $C(i,j) == C(j,i)$
Robust correlation distribution

TCP ports 0-1023
Ephemeral port correlations (cont’d)
Robust correlation distribution (TCP/50000-51024)
Ephemeral port correlations

50 high numbered ports
Correlation clusters

Many correlated ports (indicated by ::)
If A::B and B::C, then A::C
Can we identify clusters A::B::C::D:::
Yes!

- For 0-1023, cluster of 133 ports
 - Could be higher with better data (need to include filtered traffic)
- For 1024+, nearly all ports are correlated
 - Large number of independent web browsers lead to well-behaved seasonality
Server ports

Ports 0-1023
Generally servers
Many unassigned/unused ports
Lots of filtering
Some obsolete services, possible source of threats
Ephemeral ports

Ports 1024-65535
A few servers
- Databases (Oracle 1521, MS SQL 1433/1434)
- Proxies (1080/8080)
- RPC services

Peer-to-peer
Backdoors (31337, etc)

Ephemeral ports for client services
- Request/response results in two flows
The Method

Identify correlation cluster
Monitor all clustered ports, detect deviations
 ▪ Find median flow count for cluster, subtract from each port
 ▪ Significant number of flows above median → alert

Investigate deviations further
 ▪ Increased flows + increased hosts, intermittent → widespread horizontal scanning
 ▪ Increased flows + increased hosts, persistent → possible worm
 ▪ Increased flows, no increased hosts → localized activity, possibly still a threat
Case Study: 42/TCP

- Microsoft Windows Internet Name Service (WINS)
- Phasing out (replaced by Active Directory, DNS)
- Still present in Win2k3 Server
- Vulnerability announced Nov 25, 2004
- Scanning publicly announced Dec 12
- Could we have detected scanning earlier?
42/TCP: Deviations from correlation

Before vulnerability announcement
42/TCP: Deviations before vulnerability announcement

• Some deviations observed
• Always involved a small number of hosts (1 or 2)
• < 10,000 additional flows/hour
• No global activity indicated
42/TCP: Deviations from correlation
After vulnerability announcement, # flows/hr
42/TCP: Deviations from correlation

After vulnerability announcement, # hosts/hr
42/TCP: Deviations from correlation

After the announcement on 11/25

- Large increase in flows 12/1 2am (>100,000 additional flows/hr)
- Surge in #hosts/hr by 12/1 midnight
- Could have announced:
 - Scanning of port 42/TCP observed
 - Announce by morning of 12/2
 - Ahead of other announcement by 10 days
Port 2100/TCP
Interactive analysis
Future Directions

Median in sliding window of ports?
 - Uncover attacks against ranges of ports

Unique number of sources, destinations
 - ipsets?

Work on non-quiescent ports
 - Some experiences with ephemeral ports (return traffic)
 - Models will differ for different services
 - user-driven (e.g. web)
 - automated (e.g. ntp)

Flows vs. bytes vs. packets
 - Peer-to-peer
 - Information exfiltration

Automatic identification of backscatter (to be ignored?)
Conclusions

Many ports highly correlated
 - Vertical scanning (esp. server ports)
 - Client activity responses (ephemeral ports)

Removing correlated activity exposes other activity
 - DDoS backscatter
 - Port-specific scanning
 - Port-specific exploit attempts
 - Worms

42/TCP real world example
 - Clear signal
 - Public announcement 10 days earlier

Automated method for focusing attention on specific ports
CERT/NetSA
CERT/NetSA
Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh PA 15213
USA

Web: http://www.cert.org/netsa
Flow-based Analysis

A flow is a one-way network traffic instance

- Source ip and port → destination IP and port
- Corresponds to 1 side of a TCP session
- Aggregates UDP pseudo-sessions
- Times out

Example implementation: Cisco NetFlow