RID IETF Draft Update

Kathleen M. Moriarty
Interim INCH Working Group
13 June 2004

This work was sponsored by the Air Force under Air Force Contract Number F19628-00-C-0002.

"Opinions, interpretations, conclusions, and recommendations are those of the author and are not necessarily endorsed by the United States Government."
RID Updates

• Purpose
• RID and INCH
• Messaging Format for RID
• Define Extensions to IODEF Model
• New Extension for Policy and Trace Continuance
• Communication Mechanism for RID Documents
• Security Considerations
Real-time Inter-network Defense (RID)

- Trace Security Incidents to the Source
- Stop or Mitigate the Effects of an Attack or Security Incident
- Facilitate Communications between Network Providers
- Integrate with existing and future network components
 - Systems to trace traffic across a network
 - Intrusion Detection Systems
 - NetFlow, Hash Based IP Traceback, IP Marking, etc.
 - Network devices such as routers and firewalls
- Provide secure means to communicate RID messages
 - Consortia agree upon use and abuse guidelines
 - Consortia provide a key exchange method
 - Trusted PKI, certificate repository, cross certifications
RID and INCH

- RID is used to communicate security incident handling information between CSIRTs or NPs
- RID carries much of the same data as an IODEF document
- RID requires a few additional data elements
- Communication and proper transport of messages is in the RID specification
- RID is now reformatted to use the IODEF specification
 - Packet based format to IODEF document
- RID message types
 - XML IODEF document with RID extensions
 - SOAP Wrapper
 - Transport via BEEP or HTTP
RID Extensions to IODEF

- AdditionalData Class from IODEF used to define Extensions
 - IPPacket Class
 - Allows hex packets to be stored in the RID message in a format that will be expected by the recipient of a RID message
 - Multiple packets may be sent in a single message
 - NPath Class
 - Purpose is to identify the path of the trace and to avoid loops
 - TraceStatus Class
 - Method for providing approval status from upstream peer after a trace request is made
 - RIDPolicy
 - Method to determine via RID messages if trace should be continued between NPs
 - Policy negotiations for RID messages

- Reliability of the trace type requested
 - Some NPs may have multiple choices for traceback
 - Method needed to decide which of several methods should be used by the percentage from the originator of request

- Level of trace required
 - RID systems need to reference the IODEF expectation class to determine how fast of a trace mechanism should be used
 - The start time and end time can be used to determine if a fast method of tracing or a slow and more detailed trace mechanism can be used
RID Policy

• RID Policy
 – New extension to ensure that policy information is transferred between participating RID peers
 – Policy information in RID to prevent policy related issues from relying on the transport mechanism for enforcement

• RIDPolicy Information
 – Extension to define the type of trace
 IODEF Method and Impact class information should be considered for the type of traffic requested for trace and the success of an attack
 Explicit statement for the type of trace requested in case it does not fit into the category of attack traffic and can be linked to a CVE or other identifier
 – Identifies where the traffic may have policy issues
 Client to NP
 NP to client
 Within a consortium
 Between peers
 Between consortiums
 Across national boundaries

• Purpose is to try to prevent abuse of the system
 – Address security, confidentiality, and privacy concerns listed in the draft
 – New extension created to address issues raised at IETF-59
Communicating RID Messages

• **SOAP Messaging Wrapper and XML Security**
 – Method to transport messages
 – Policy negotiated in RID message and not wrapper
 – Provide integrity, authentication, authorization
 – XML digital signature, encryption, and public key infrastructure
 Encryption of RID for privacy and security reasons should be via XML encryption and not through the security provided by a wrapper or higher level protocol

• **Public Key Infrastructure**
 – Provided by consortiums linking network providers for RID messaging

• **Message Types**
 – Trace Request
 – Trace Authorization
 – Source Found
 – Relay Request

• **RID Systems Must Track the Requests by**
 – Incident Number
 – Packet Contents
 – Completion Status
Security Considerations

• Consortiums
 – Agreements between entities involved in RID peering
 – Provide a secure key exchange repository/system (PKI)
 – Peering agreements and policies between consortiums and across national boundaries or jurisdictions
 – Policy enforced through RID messages by stating level and type of trace

• System use guidelines
 – Privacy considerations
 – Abuse policies
 – Use policies may vary across national network or consortium boundaries
 Automated method to allow enforcement of use agreements

• RID server security policies
 – Network based access controls
 – Hardened systems

• Communication security considerations for the exchange of RID messages and the underlying protocols
Summary

• Updates from the previous version
 – Extended the AdditionalData Class to accommodate the needs of RID messaging and RIDPolicy
 Extended information on system use and privacy considerations
 – PKI at the core of the security model, but provided by a consortium
 – Topology examples to address implementers questions
 – DTD moving to schema format
• Near Future Update will include
 – SOAP wrapper and more information on XML Security
 – May include additional examples of other message types
 – Any suggested revisions or clarifications
• http://www.ietf.org/internet-drafts/draft-ietf-inch-rid-00.txt