Software Best Practices Clearinghouse

Promoting Adoption and Effective Implementation

Kathleen Dangle
Fraunhofer Center for Experimental Software Engineering

Thomas McGibbon
ITT Industries/Data & Analysis Center for Software (DACS)

Richard Turner
The George Washington University
Presentation Objectives

• **Share** with you our thinking on why we believe programs face challenges implementing best practices and how we overcome those challenges

• **Inform** you about the Best Practices Clearinghouse Initiative

• **Encourage** you to think about your experiences with considering or implementing best practices

• **Request** your feedback and motivate you to get involved
How Do We Encourage Broader Use of Best Practices?

Through the Best Practices Clearinghouse

- Promote and assist in the adoption and effective utilization of “best practices”
- Provide central access to validated, actionable practice information
- Target the needs of the Department of Defense software acquisition and development community
Implementation Barriers

- Programs are aware of “best practices,” but they don’t often choose to implement them
 - Too many lists to choose from
 - No basis for selecting specific practices
 - Proof of effectiveness is not generally available
 - Not easy to see connection between practices and specific program risks or issues
 - Practice’s success factors not well understood
 - Resources are limited and the return on practice investment is unknown
 - Implementation guidance is inadequate
Traditional Best Practices

- Are disciplines rather than specific practices (e.g., Risk Management)
- Have problematic descriptions
 - If descriptions too generic or abstract, hard to apply; if too context specific, don’t seem relevant
 - Implementation directions insufficient, ineffective, imprecise
 - Rarely supported by data
- Take energy and resources to implement, but benefits may come (much) later or are hard to quantify
- Implementation does not always work
 - Often depend on other practices
 - Are not implemented as designed
 - Depend on project context (size, complexity, life-cycle phase)
What Do We Mean By ‘Supported By Data’?

- Example: NASA Software Engineering Laboratory Ground Support Systems Software Development
 - Used experiments and data to evaluate, select, implement and track the impact of development practices
 - By feeding back actual performance data into their work, and using only practices their data showed effective, they:

 Decreased Development Defect rates by

 Reduced Cost by

 Improved Reuse by

 Increased Functionality five-fold (1976 - 1992)
Practice Analysis Examples

- **Best practice: Smaller modules have less defects**
 - Reality: Observation and analysis showed sweet spot

![Graph showing fault rate vs size/complexity]

- **Best Practice: Early detection of defects**
 - Initial experience: late detection >100X more expensive
 - New data showed
 - 100X still valid for severe defects
 - However, only 2X more expensive for less severe defects
 - Business model drives acceptance of late costs
The Clearinghouse Vision

- *The best practice resource for the Department of Defense*
- Based on empirical evidence
- Validated practice information provides level of confidence
- Leverages existing best practices and centralizes access to them
- Captures cost, benefits, context, latency
- Supports user-driven selection of relevant practices
- Provides step-wise implementation guidance and expert assistance
- Tracks and measures results
Key Strategies to Overcome Challenges

- **User-focused** access and information infrastructure
- **Empirically based** Information in the repository
- The building block of each practice or set of practices is a “story”
- A set of stories are synthesized into a profile
- Details of the practice are provided on demand
- A type of color code scheme provides a quick and easy way of understanding the level at which the practice is well-proven or robust
Delivery Infrastructure Focused on Users

• Easy to use, informative tools for best practices selection and implementation support
 - Practices suggested by goal, risk, phase, program size
 - Implementation ordering for multiple practices
 - Evolution from basic through advanced practices
 - Flexible search mechanisms

• Active community involvement and links to expertise
 - Acquisition Community Connection (nee PM CoP)

• Dissemination of Clearinghouse latest information through widely-used venues: courses, workshops, articles, conference tutorials
Exploiting Sources of Information

- **Identify and utilize what we already know**
 - Mine best practices and lessons learned repositories (from the Services, Agencies, FFRDCs, DAU, Academic Institutions, DACS Gold Practices, Industry, literature, etc.)
 - Cultivate relationships with practice experts and researchers
 - Gather experiences on specific programs

- **Make it readily accessible**
 - One central entry point to organized information
 - Not re-publish what is already there, but provide links

- **Make it easy to use**
 - Extract key information from more detailed sources
 - Provide visual cues and progressively more detailed information

- **Keep it current**
 - E-workshops support practice identification and validation
 - User feedback
 - Ongoing study, conferences, workshops, symposia
Best Practices Vetting Process

Each cycle allows more experience to be gathered and processed, leading to better characterization of the practice, improved recommendations, and more dependable implementation guidance.

Practice/packaging maturation cycle

<table>
<thead>
<tr>
<th>Identification</th>
<th>Characterization</th>
<th>Analysis & Synthesis</th>
<th>Validation</th>
<th>Packaging & Dissemination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inputs:</td>
<td>Inputs:</td>
<td>Inputs:</td>
<td>Inputs:</td>
<td>Inputs:</td>
</tr>
<tr>
<td>Leads to practices</td>
<td>Set of candidate practices and rationale for consideration</td>
<td>Detailed set of candidate practices</td>
<td>Sets of practice data; validation criteria</td>
<td>Sets of practice data; validation criteria</td>
</tr>
<tr>
<td>Activities:</td>
<td>Activities:</td>
<td>Activities:</td>
<td>Activities:</td>
<td>Activities:</td>
</tr>
<tr>
<td>• Collect</td>
<td>• Aggregate stories, create profile of practice</td>
<td>• Check outputs from previous phases</td>
<td>• Packaging</td>
<td>• Packaging</td>
</tr>
<tr>
<td>• Categorize</td>
<td>• Populate the repository</td>
<td>• Publishing</td>
<td>• Publishing</td>
<td>• Publishing</td>
</tr>
<tr>
<td>• Filter</td>
<td>• Identify/define Interrelationships</td>
<td>• Promoting</td>
<td>• Promoting</td>
<td>• Promoting</td>
</tr>
<tr>
<td>• Synthesize</td>
<td>Outputs:</td>
<td>• Provide user help</td>
<td>• Providing user help</td>
<td>• Providing user help</td>
</tr>
<tr>
<td>• Prioritize</td>
<td>Candidate set of practices</td>
<td>More detailed set of candidate practices with “stories”</td>
<td>Approve practices via panel of experts</td>
<td>Repository update</td>
</tr>
<tr>
<td>Outputs:</td>
<td>Outputs:</td>
<td>Outputs:</td>
<td>Outputs:</td>
<td>Outputs:</td>
</tr>
<tr>
<td>Leads to practices</td>
<td>Candidate set of practices</td>
<td>More detailed set of candidate practices with “stories”</td>
<td>Validated practices</td>
<td>More detailed set of candidate practices with “stories”</td>
</tr>
</tbody>
</table>

Possible practice validation coding

- **Proven**
- **Consistent results**
- **Initial validation**
- **Nominated**
Case Study # 24

Best practice

Formal inspections

Source

The use of software inspections will ensure a high level of system quality.

Lesson Learned

Attention must be paid that inspections are practiced correctly, with appropriate formality, to ensure defect removal benefits.

Breakdown in the use of inspections

- Contrary to typical practice, there was not a requirement for a navigation (end-user) representative to be present at any of the walkthroughs or the acceptance test.
- The Sm forces software not mission critical, which reduced the number of reviews done on the software compared to mission critical.

BP Interrelationships

Architecture-First Approach

- **Ensure Interoperability**
- **Develop/Maintain A Life Cycle**
- **Business Case**
- **Common Management**
- **And Manufacturing Systems**
- **Commercial Specifications**
- **And Standards/Open Systems**
- **Capture Artifacts In Rigorous Model-Based Notation**
- **Assess Reuse Risks and Costs Agreement On Interfaces**
- **Acquisition Process Improvement**
- **Requirements Trade-Offs Negotiations**
- **Plan for Technology Insertion**
- **Manage Requirements**
- **Leverage COTS/NDI**
- **Integrated Product And Process Development (IPPD)**
- **Independent Expert Reviews/SCEs**
- **Formal Risk Management**
- **Enables Provide a basis for decisions Documents/communicates the architecture Requires architecture be evaluated by Assess the value of adopting Is a required part of Business goals & requirements drive architecture decisions Risks are identified and drive decisions Is necessary for**

Experience data

Conceptual BP Information

Characteristic data

<table>
<thead>
<tr>
<th>No.</th>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Indicators</td>
<td>Types that support implementation of this practice would be advantageous.</td>
</tr>
<tr>
<td>2</td>
<td>Communications</td>
<td>Types that support against implementing this practice.</td>
</tr>
<tr>
<td>3</td>
<td>Appropriate Candidates</td>
<td>Types of programs that would benefit from implementation.</td>
</tr>
<tr>
<td>4</td>
<td>Inappropriate Candidates</td>
<td>Types of programs where this practice would be useless or harmful.</td>
</tr>
<tr>
<td>5</td>
<td>Enablers</td>
<td>List barriers to implementation under each category (categories described in instructions).</td>
</tr>
<tr>
<td>6</td>
<td>Enablers</td>
<td>List enablers which could support implementation under each category (categories described in instructions).</td>
</tr>
</tbody>
</table>

Implementation data/ guidance

Inspection process overview

Phase 1: Planning

Inspectors should have vested interests in work product

Inspectors should invest no more than 15% of their time in inspections (don't overwork good inspectors!)

Phase 2: Preparation

Inspectors should spend at least as much time in preparing as is required for the inspection meeting.

Provide adequate lead time for inspectors to perform preparation (3 - 5 work days)
Example Tool for Practice Selection & Investigation

Life Cycle Phase: CTD
Risks/Issues: Limited SW productivity
Validation Coding: Proven
Mitigation: Architect SW for parallel development
DACS Gold Practices

- Initiative began in early-2002, extending previous best practice research
- Objectives:
 - Disseminate consistent, easy-to-understand, value-added best practice information
 - Gather user experience on best practice information
- 35 practices identified; 4 currently described
- Relationship to Clearinghouse
 - Initial information source for Clearinghouse
 - Clearinghouse activities will inform and improve Gold Practice products
How Can You Get Involved?

• *Let us know your needs by*

 - Identifying your best practices *lists* and *sources* of guidance for their use
 - Sharing your *experiences* & lessons learned in implementing best practices
 - Volunteering to help us define the services and capabilities of the Clearinghouse
 - Participating in surveys, e-workshops and other events - See http://iac.dtic.mil/dacs for more information

• *Participate in the next session, “Software Acquisition Best Practices Workshop”*
The Best Practices Clearinghouse – In Summary

- Centralized resource
- Lessons learned in application of practices
- Empirically based, Experiences provided
- Acquisition and development practices
- Repository of vetted practices
- Important insight
- Not just another list; Not just a website
- Guidance on selection
- Help provided through multiple services
- Outreach to user community
- Useful information
- Search capabilities
- Easy to use & informative tools
Contact Information

Kathleen Dangle
Fraunhofer Center for Experimental Software Engineering
kdangle@fc-md.umd.edu
301-403-8973

Thomas McGibbon
ITT Industries/ Data & Analysis Center for Software (DACS)
Tom.McGibbon@itt.com
315-334-4933

Richard Turner
The George Washington University
Rich.Turner.CTR@osd.mil
703-602-0851 x124