An Acquirer’s Guide to Navigating Contractor Data

Jeannine Siviy
Wolf Goethert
Robert Ferguson

Software Engineering Measurement & Analysis Initiative

Sponsored by the U.S. Department of Defense
© 2004 by Carnegie Mellon University
Trademarks and Service Marks

® Capability Maturity Model, Capability Maturity Modeling, Carnegie Mellon, CERT, CERT Coordination Center, CMM, and CMMI are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

SM Architecture Tradeoff Analysis Method; ATAM; CMM Integration; CURE; IDEAL; Interim Profile; OCTAVE; Operationally Critical Threat, Asset, and Vulnerability Evaluation; Personal Software Process; PSP; SCAMPI; SCAMPI Lead Assessor; SCAMPI Lead Appraiser; SCE; SEI; SEPG; Team Software Process; and TSP are service marks of Carnegie Mellon University.
Objectives

Establish a view of the acquirer and supplier/contractor roles and responsibilities.

Show how measurement and analysis skills for internal development can be recast for acquisition and contracting environments.

Address a prevalent question in the acquisition community:
 • How can we conduct causal analysis when we no longer control the collection processes and/or data?
Outline

Acquisition roles & responsibilities
Measurement & analysis methods
Illustration
 • background
 • monitoring and oversight: progress analysis
Summary
References
Responsibility and Authority

Measuring project and product success is the same whether the project is internal or contracted:
• on schedule
• at cost
• with required functionality
• without defects

The acquiring program manager’s “circle of influence” and “circle of control” is different than the development project manager’s.
• development project manager addresses project execution
• acquisition program manager executes new set of processes
• acquisition program manager should leverage development knowledge to manage the contract methodically, rationally, and knowledgeably
Roles and Information Exchange

Contractual Handshake

Acquirer

Pre-award activities
- RFP prep.
- Contract Award

Post-award activities
- Monitor Project Progress
- Evaluate Deliverables

Supplier / Developer

Develop, Customize, Integrate
- systems
- software
- COTS

Sub Contractors

SEPG / SAPG

Functional & Quality Requirements

Status Information

Interim Documents, Tangibles

Directions, Corrections

Deliverables

SEPG
Measuring Project, Product, Process

Processes

- Acquirer
 - Pre-award activities
 - Post-award activities

- Supplier
 - Develop, Customize, Integrate
 - systems
 - software
 - COTS

Contractual Handshake

- Exchange of indicators / information for tracking, monitoring, direction, etc.

Project

- Schedule (status, projection, trend)
- Cost (status, projection, trend)
- Requirements satisfaction

Products

- Supplier Produced
 - Quality (amount of rework)

- Acquisition Organization Produced
 - Quality (amount of rework)

Relationship

- Roles (changes)
- Invoicing (payment)
Responsibilities After Contract Award

Contractor

Develop the System

Deliverables

Documents
- SRD
- SDP
- Measurement Plan
- SDD

Status Reports
- Schedule
- Cost
- Testing

Final Product

ACQUIRER

Acquirer Responsibilities (Post-Contract Award)

- Evaluate Quality of Deliverables
- Monitor and Oversight
 - Schedule & Progress
 - Resources & Costs
 - Developer’s Processes
Monitoring & Oversight

Status Information
- schedule progress
- budget status
- test results
- process results, such as inspections
- process compliance

Acquirer’s Analysis & Review Process

Measurable Results (Examples)
- contractor effort actual vs. plan
- contractor schedule actual vs. plan
- defects reported
 - description, severity, class, type
- size, complexity of the work product

Acquirer's Evaluation Criteria

Indicators
Evaluating Quality of Deliverables

Documents to review
- SRD
- SDP
- Meas Plan
- SDD

Acquirer's Evaluation criteria

Measurable Results (Examples)

Products
- defects discovered
- description, severity, class, type
- size of the work product

Process
- effort invested in the inspection process
- time spent during the inspection activities

Indicators
Outline

Acquisition roles & responsibilities
Measurement & analysis methods
Illustration
 • background
 • monitoring and oversight: progress analysis
Summary
References
Sources for Measures

Goal-Driven (Software) Measurement (GDM)

<table>
<thead>
<tr>
<th>Goals</th>
<th>Questions</th>
<th>Indicators</th>
<th>Measures (GQIM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>USER DEFINES INDICATORS & MEASURES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Based On:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• what’s needed to manage the User’s goals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• decisions and decision criteria related to managing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the user’s goals</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Practical Software & Systems Measurement

<table>
<thead>
<tr>
<th>Common Issue Area</th>
<th>Measurement Category</th>
<th>Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREDEFINED</td>
<td>PREDEFINED</td>
<td>PREDEFINED</td>
</tr>
</tbody>
</table>
Getting Started
• Identify the goals
• Black box process view
• Is the data right?
• Do I have the right data?

Decision point:
• If the data is not perfect, do I move forward or obtain better data?

Initial Evaluation
• What should the data look like?
• What does the data look like?
• Can I characterize the process, product, problem?

Decision point:
• Can I address my goals right now?
• Or is additional analysis necessary? at the same or deeper level of detail?
• Can I move forward?

Moving Forward
• Further evaluation
• Decompose data, process

Decision point:
• Do I take action?
• What action do I take?

Repeat until root cause found, at target with desired variation

[DAD 03]
Performance Analysis Model

- Technical Adequacy
- Development Performance
- Growth and Stability
- Resources and Cost
- Schedule and Progress
- Customer Satisfaction
- Product Quality

[PSM 00]
Performance Analysis Checklist

Single indicator issues:
• Do actual trends correspond to planned trends, such as progress, growth, and expenditures? How big is the variance?
• Does the variance appear to be gradually growing each month?
• Are actual values exceeding planned limits, such as open defects, changes, and resource utilization?

[PSM 00]
Integrated indicator issues:

- Is the source of the problem evident?
 - Change in functionality, unplanned rework, etc.
- Are growing problems in one area a leading indicator of other problems later in the project?
 - Requirements creep impact on schedule
- Do multiple indicators lead to similar conclusions?
 - Lack of progress correlates with low staffing
- Does other project information contradict performance results?
 - Milestones being met but open defect counts are increasing
Outline

Acquisition roles & responsibilities
Measurement & analysis methods
Illustration
 • background
 • monitoring and oversight: progress analysis
Summary
References
Illustration

This illustration is based on an organization that is
• maintaining an existing product, a blend of COTS, and
 internally developed code
• pursuing the acquisition of a replacement product

Their acquisition includes two contracts:
• requirements development
• product design, code, and test

This illustration will focus on
• analyzing project execution data (Contract 2)
Monitoring & Oversight

Contract 2 has been awarded.
• supplier is developing the product in two builds

The contractor has just notified you that the project has both cost and schedule slippage.

What do you do?
Contractor Information

Contractor information:
• provides data per your contractual agreement
• also provides additional data if you ask*
• uses measurement data to help monitor development
• has defined processes and monitors compliance
• analyzes software trouble reports to identify process improvements
• average software process maturity

*Typically, If the RFP does not require the data, the contractor is not obligated to provide it. In this case study, the acquirer and contractor have a good working relationship and the contractor is willing to share data beyond what the RFP specifies.
Action: Management Review

Meet with development contractor to:
• Find out what is happening.
• Find out why it is happening.

What decisions/actions could be taken based upon the data presented?
• to correct the slippage
• to prevent further slippage

Postulate future consequences of these decisions

Identify actions that could have been taken earlier to prevent the slip
Use model to guide analysis.

- Step 1: Confirm Problem (Cost & Schedule Slippage)
Schedule & Progress Indicators

Cost

PV

AC

EV

Cost Var. = EV - AC

Sched Var. = EV - PV

PV: Planned Value
AC: Actual Cost
EV: Earned Value

Tool tips:
The top two charts were made in Excel and manually manipulated.
The Gantt chart can be generated using any scheduling software.
What We Learned

From Schedule and Progress indicators
• cost and schedule slippage -- *EV chart*
• activities taking longer than planned -- *Gantt chart*
• assembly and test behind schedule -- *components completion chart*

What does this mean?
• confirms we have a problem
Resources and Cost Indicators

Analysis/Probing Questions
• Is the staff allocation contributing to the problem (too many, too few, wrong time frame)?
• What is rate of staff turnover?
• How does actual staff compare to planned staff allocation?
Resources and Cost Indicators

Number of Staff

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Feb</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Mar</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Apr</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>May</td>
<td>9</td>
<td>9</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Jun</td>
<td>12</td>
<td>11</td>
<td>15</td>
<td>18</td>
</tr>
<tr>
<td>Jul</td>
<td>22</td>
<td>19</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>Aug</td>
<td>23</td>
<td>20</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>Sep</td>
<td>22</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Oct</td>
<td>22</td>
<td></td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Nov</td>
<td>22</td>
<td></td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Dec</td>
<td>22</td>
<td></td>
<td>22</td>
<td></td>
</tr>
</tbody>
</table>

Turn Over

<table>
<thead>
<tr>
<th>Key Pers.</th>
<th>Others.</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>30</td>
</tr>
</tbody>
</table>

Plan vs Actual

- **Prg**: Planned vs Actual numbers for different months.
- **Tester**: Planned vs Actual numbers for different months.

Tool tip: This chart was made in Excel and manually manipulated.
What We Learned

From Resources and Cost Indicators

- staffing did not follow planned level
 - too many at beginning of project
 - testers and programmers used to fill in for analysts and designers => high re-training costs
 - high turnover rate => training & getting up-to-speed costs

What does this mean?

- cost overrun due partly to staffing problems
Growth and Stability Indicators

Analysis/Probing Questions
- Are the requirements stable?
- What is the code growth?
- Is functionality being transferred from build 1 to build 2? If so, how does this effect the delivery date?
Requirement Changes Information

As of Jul 03

Added Req.
Total Req.

Build 1

Build 2

Number of Requirements

0 20 40 60 80 100 120 140

J F M A M J J A S O N D J F M A M J

2002 2003

<table>
<thead>
<tr>
<th></th>
<th>2002</th>
<th>2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Req Changes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Feb</td>
<td>Mar</td>
</tr>
<tr>
<td>Complexity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Resources (staff-days)</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Tool tip: This chart can be generated in Excel followed by manual editing using the drawing toolbar.
Growth and Stability Indicators

Size Growth

Requirements per Build

Contractor’s Explanation:
• Functions deferred to later build because of unanticipated complexity

Tool tip: This chart was made in Excel and manually manipulated.
What We Learned

From Growth and Stability Indicators
- requirement changes are of low complexity but will have some ripple effect
- code production below planned value
- functionality being deferred from build 1 to build 2 attributed by contractor to unanticipated complexity

What does this mean?
- expect further cost and schedule growth due to low code production and increased number of functions to be implemented in Build 2
- expect an impact on completion date due to functions deferred to Build 2
- expect the possibility of a “Build 3” proposal
Product Quality Indicators

Analysis/Probing Questions
• Are the defined processes being followed?
• What is the rate of closure for trouble reports?
• What type of trouble reports are being detected? In what phase?
Product Quality Indicators

Tool tip: This chart was made in Excel and manually manipulated.
Classifying Trouble Report Defects

Types that code inspections would have been expected to catch
What We Learned

From Product Quality Indicators
• STRs being opened faster than they’re being closed
• Code inspections should have found defect types

What does this mean?
• Code inspection process allowed large number of defects to slip through.
Development Performance Indicators

Analysis/Probing Questions
• Are the defined processes being followed?
• Are any defined processes being skipped?
Development Performance Indicators

Tool tip: This chart was made in Excel and manually manipulated.
What We Learned

From Development Performance Indicators
• adherence to defined process decreased over time
• stopped doing inspections

What does this mean?
• defects usually detected during code inspections allowed to slip through
• impact on cost and schedule due to rework
Reasons for Slippage

Staffing problems:
• too many at beginning of project
• below planned level during most of development
 - noting that productivity increased dramatically
• high turnover rate

Process compliance:
• stopped doing inspections
• allowed errors to leak to later phases

Requirements changes after Build 2 code and unit test

Conclusion:
• expect further cost and schedule growth due to low code production and increased number of functions to be implemented in Build 2
Possible Actions

Developer Actions
- replan based on current performance
- get staffing under control
 - verify the skills balance of resources
 - do not decrease staffing to conform to “planned” staffing, particularly if that would decrease the number of programmers
- restart inspections
 - code
 - test cases

Acquirer Decision Options
- use contract labor (additional costs)
- deliver smaller size - less functionality
- accept schedule slip
What if Data is Not Available?

Data may not be available because
• contractor does not collect this level of data
• contractor not required by contract to report it

Using process compliance data as an example, how might missing this data affect conclusions, actions, and project results?
• corrective action might have adjusted staffing
• it would not have addressed the skipped inspections which allowed errors to leak to later phases, resulting in increased cost and schedule

A possible action to infer process compliance
• could check data on results of code inspections (if data is specified on contract)

Lesson learned: specify in contract what type of data to be reported in status reports
Prevention

Visible indicators of underlying problems

Cost & Schedule Slippage

Developers “corrective” actions

Functionality being deferred
 Decreased process compliance (skipped inspections)

Direct causes of problems

Unanticipated complexity
 Inability to process STRs

Root causes of problems

Staffing issues
 Requirement changes

The performance analysis model is a guide to root cause. Understanding root cause leads to prevention.
Outline

Acquisition roles & responsibilities
Measurement & analysis methods
Illustration
• background
• monitoring and oversight: progress analysis

Summary
References
Roles and Information Exchange

Acquirer
- **Pre-award activities**
 - RFP prep.
 - Contract Award
- **Post-award activities**
 - Monitor Project Progress
 - Evaluate Deliverables

Supplier / Developer
- Develop, Customize, Integrate
 - systems
 - software
 - COTS

SEPG / SAPG
- Functional & Quality Requirements
- Status Information
- Interim Documents, Tangibles
- Directions, Corrections
- Deliverables

Sub Contractors

© 2004 by Carnegie Mellon University

Version 1.0

page 44
Measuring Project, Product, Process

Processes

- Pre-award activities
- Post-award activities

Acquirer

Contractual Handshake

Exchange of indicators / information for tracking, monitoring, direction, etc.

Supplier

Develop, Customize, Integrate
- systems
- software
- COTS

Products

- Supplier Produced
 - Quality (amount of rework)
- Acquisition Organization Produced
 - Quality (amount of rework)

Project

- Schedule (status, projection, trend)
- Cost (status, projection, trend)
- Requirements satisfaction

Relationship

- Roles-Changes
- Invoicing-payment
Summary

Key acquisition responsibilities (after contract award):
• monitoring and oversight
• inspecting, reviewing, and understanding documents and other work products

Post-contract award success depends on pre-contract award activities
• building measurement expectations into contracts
• establishing good partnerships and working relationships with contractors

Measures and indicators across landscape are interrelated
• use the Performance Analysis Model as your navigation guide
• always use multiple indicators

Measure products, processes, projects, relationships
Contact Information

Wolf Goethert
Software Engineering Institute
Measurement & Analysis Initiative
Email: wbg@sei.cmu.edu
412-268-3889

Jeannine Siviy
Software Engineering Institute
Measurement & Analysis Initiative
Email: jmsiviy@sei.cmu.edu
412-268-7994

Robert Ferguson
Software Engineering Institute
Measurement & Analysis Initiative
Email: rwf@sei.cmu.edu
412-268-9750
References

Note: URLs valid as of tutorial delivery date.

[DAD 03] Siviy, Jeannine and William Florac, Data Analysis Dynamics, Half Day Tutorial Delivered at SEPG 2003, Boston, MA

Reading & Resources

Note: URLs valid as of tutorial delivery date.

Practical Software and Systems Measurement (PSM)
- reference for the Performance Analysis Model
- reference lists of measures to consider
- http://www.psmsc.com

Goal Driven Measurement (GDM) and Goal-Question-Indicator-Metric (GQIM)
- front end for selecting most relevant PSM measures
- used for developing context-specific indicators, particularly “success indicators”
- “Goal-Driven Software Measurement--A Guidebook”
Reading & Resources

Note: URLs valid as of tutorial delivery date.

Defense Acquisition University (DAU) Deskbook

- http://deskbook.dau.mil/jsp/default.jsp
- provides information about regulatory references, mandatory and discretionary references by service branch, and several knowledge repositories

Guidelines for Successful Acquisition and Management of Software-Intensive Systems,

Acquisition Centers of Excellence

- Air Force, for instance ESC Hanscom
- Navy
Reading & Resources

Note: URLs valid as of tutorial delivery date.

Project Management Body of Knowledge (PMBOK®)
- proven, traditional project management practices and innovated, advanced practices with more limited use
- Project Management Institute Guide to the PMBOK contains the generally accepted subset of knowledge and practices that are applicable to most projects most of the time