Organizational Considerations for the Estimating Process

Bob Ferguson
Learning Objectives

Purpose of estimating

Contents of a good estimate

Process factors for good estimates

Organizational Risk Factors
Typical “Estimating” Problems

“My manager would not approve the initial estimate”
“The project doubled in size after the estimate.”
“The new CASE tool did not work correctly and slowed us down.”
“We had no estimating tool at the time of the estimate.”
“I lost some developers and had to find replacements.”
“Some people were assigned to the project charge number before the work started.”
Budgeting

Budgeting is different from estimating

Budget determines a value proposition.
- I want to build my own house on a piece of land I own.
- I can afford to invest $300,000 in this house.
- I can make tradeoffs in the requirements to achieve this number.

Preliminary estimate
- I know the cost-basis of a house, similar to one I want, was $150/sq-foot. Since my budget is $300K. I should plan a house that is a bit less than 2000 sq-feet.

The budget can come before the requirements.
- My house needs 3 bedrooms and an art studio.
The Estimate is Not the Plan

The estimate describes

• What it will cost in terms of how much work is required
• How long it will take for the assigned number of people.
• A curve that shows the relationship between people and time
• Which inputs and assumptions had the greatest effect
Multiple Purposes

Development of budgets

Project planning

Project change management

Bidding on an RFP

Preparation of an RFP

Strategic planning
Outline

Purpose of an estimate

Create a standard for estimates

Estimating inputs

Process factors for good estimating

Risk factors in estimating

Wrap up
Begin with the End in Mind*

How does the estimate affect the actions and decisions of these people?

Principle: It’s easier to make a process or procedure stick if it serves several different people.

Steven Covey, *Seven Habits of Highly Effective People*
Estimation Process Serves

Project Manager
Must plan and control the project.
Re-plan when there are changes.

Senior Manager
Allocate resources
Reprioritize work
Trusts the estimate.

Estimator
Trained to the process.
Access to project history

Project Team
Check assumptions
Project Manager

Role: Has the direct responsibility for project success.

Uses the estimate for planning
- Scoping, tasking, staffing, scheduling, constraints, risk planning

Uses the estimate to help with change management
- Why is the estimate now inadequate?
- Additional knowledge acquired during project
 – Complexity, resources, process capability & capacity, etc.
- Changed constraints
- Changed scope
- Risk event
Executive

Role: Allocate resources and working capital according to business priorities.

Uses the estimate to:
- Assess affordability, cost / benefit
- Prioritize work among competing projects
- Schedule and allocate resources and working capital
- Respond to change requests by
 - Reprioritize and reschedule projects, and/or
 - Reallocate resources

Estimating Needs:
- Costs, resources, duration, risk and possible tradeoffs
Estimator

Role: Accountable for making estimate, training others to estimate.

Identifies critical project factors that drive the estimate. **Uses** historical estimates and project data
- Formulate current estimate
- Improve estimating process and methods
 - Identify and modify adjustment factors
 - Identify constraints
 - Validate estimating models
- Post project reviews to understand influencing factors

Values: accuracy, productivity, professional growth
Estimating Context

Constraints
- Cost, Schedule
- Resource limits
- Other

Directives
- policy, publication...

Scoping
- Deliverables
- Requirements
- Complexity
- Lifecycle

Estimating

Resources
- Skilled people
- Tools, methods
- Project history

Estimate
- Size, defects, costs, duration, staffing
- Documented inputs, assumptions
- Estimating method
- Comparable projects
- Sensitivity analysis
Estimating Process Outputs

Purpose of the Estimate
Those things with numbers that we can get:
- Total and external costs,
- Duration,
- Workforce size and buildup
- Size,
- Defects,
- Productivity.

Assumptions and constraints considered
Project Lifecycle
Estimating method, tools utilized, comparable projects
Person who did the estimate
Outline

Purpose of an estimate

Create a standard for estimates

Estimating inputs

Process factors for good estimating

Risk factors in estimating

Wrap up
Estimating

Context

- **Constraints**
 - Cost, Schedule
 - Resource limits
 - Other
- **Directives**
 - Policy, publication ...

Scoping
- Deliverables
- Requirements
- Complexity
- Lifecycle

Estimating
- Size, defects, costs, duration, staffing
- Documented inputs, assumptions
- Estimating method
- Comparable projects
- Sensitivity analysis

Resources
- Skilled people
- Tools, methods
- Project history
Scoping Data

Scope Elements

• Size

Project Lifecycle

Complexity factors

Where do you get this data?
Defining Scope

Why are we doing this project?
What objectives should the project accomplish?
What are we responsible to deliver?
- Software
- Documentation
- Hardware and other deliverables
- Demonstration and marketing events
- Installation and deployment services
- Formal external reviews
Size the Scope

From the list deliverables,

• Identify required configuration items
• Classify as needed (e.g. new, reuse, environment)
• Size items and identify uncertainty ranges for size

Do you need size for every single configuration item?

No, but I’d suggest requirements, code, test cases and any externally delivered documentation.
Lifecycle Inputs

Release Planning from Product Management
 • Requirements and release content
 • Customer and market data
 • Tradeoff goals

Product development lifecycle
 • Phasing
 • Standard intermediate deliverables
 • Tailoring information
 • Transition to manufacturing and deployment
Complexity Factors

Technical complexity factors
New aspects of business domain
Organization and geography
Certain constraints coming from the customer
 • Dates
 • Customer environment

Complexity factors increase risk or uncertainty.
Estimating Context

Constraints
- Cost, Schedule
- Resource limits
- Other

Directives
- policy, publication ...

Scoping
- Deliverables
- Requirements
- Complexity
- Lifecycle

Estimating

Estimate
- Size, defects, costs, duration, staffing
- Documented inputs, assumptions
- Estimating method
- Comparable projects
- Sensitivity analysis

Resources
- Skilled people
- Tools, methods
- Project history
Constraints and Directives

Constraints
• Budget and schedule constraints and tradeoffs
• Resource limits
 - Restricted availability of people, facilities, etc.

Directives
• Purpose of the estimate
• General policy about projects and estimation
• What to include for publication
• Additional requirements or changes for internal use

Directives may be “messages” to the project manager.
• Use Tom’s lab for testing.
• We have to bring this project in within 15 months.
• The point is to record these directives with assumptions.
Resources

People and skills
- Estimate will depend on availability of skilled people to perform the project work.
- New hires will extend the project duration and increase costs.

Tools and methods
- If tools and methods for the project are not stable, then extra time will be required for learning.

Project history database
- Data about team productivity
- Information about complexity factors
- Information about risk
Outline

Purpose of an estimate

Create a standard for estimates

Estimating inputs

Process factors for good estimating

Risk factors in estimating

Wrap up
Estimating Process Steps

1. Define the scope
2. Technical analysis
3. Business analysis (optional)
4. Follow-through

Technical Analysis

Modeling
• Document inputs and derivation of inputs.
• Document comparable projects and rationale.

Adjust Estimate
• Accounting for factors not addressed by the model.
• Eliminating model activities and elements that do not apply.
• Project staffing profile requirements rate adjustments.

Create auditable documentation and rationale for each adjustment.
Business Analysis

Adjust estimate to proposal or bid.

• “Bid-to-win”
• Cost-plus
• Incentive contract
 - Pays more for early completion
 - Pays incentive for reduced cost

Risk assessment

• Risk assessments.
• Risk graphs.
• Bid memorandum with parameter-by-parameter explanation of the risks.
Follow-Through

Estimate to Complete
• Updated size estimates.
• Updated reuse estimates.
• Updated parameter values and rationales for changes.
• Revised project estimate.
• Cost to complete.
• Schedule to complete.

Post-Project Review and Data Collection
• Resulting size, reuse, and environmental values
• An analysis of differences between results and estimate.
• Updated and recalibrated cost model database.
• Lessons learned.
The Estimate is Not the Plan

The estimate describes
• What it will cost in terms of how much work is required
• How long it will take for the assigned number of people.
• A curve that shows the relationship between people and time
• Which inputs and assumptions had the greatest effect

How do you plan?
Mapping the Estimate to the Plan

The WBS was chosen as part of the estimating process.
3-step allocation method
• Allocate costs to deliverables (supports earned value).
• [Allocate defect information to deliverables]
• Allocate schedule to milestones.
• Map people-skills to tasks.

You may need to iterate through the steps in order to build a schedule.
Create baseline plan and charts that map estimated values to schedule for reporting.
Estimating Process Quality Objectives

Organization has confidence in **accuracy** of the estimate.
Organization provides clear policy on **when** to estimate.
Staff know **who** provides the estimate and expertise.
Staff know **what** the estimate contains and how to use it.
The estimate is provided in a familiar format.
6 Requisites for Reliable Estimating Processes

• A corporate memory (database, repository)
• Structured processes for estimating size and reuse
• Mechanisms for extracting history from projects
• Audit trails (values used to estimate are recorded)
• Integrity in dealing with cost and schedule constraints
• Data collection and feedback processes that foster capturing and interpreting data from work performed

7 Indicators of Estimating Capability

• Management acknowledges its responsibility for developing and sustaining an estimating capability.
• The estimating function is supported by budget.
• Estimators are equipped with tools and training needed for reliable estimating.
• People assigned as estimators are experienced and capable.
• Recognition and career paths exist such that qualified people want to serve as estimators.
• Process improvement resources and funds are committed to improving the estimating process.
• The estimating capability of the organization is tracked and evaluated.

Park, op. cit.
Organizational Behaviors

Estimators have experience at estimation as it applies to
 • Business domain,
 • Project life cycle,
 • Capabilities
 • And our other processes (budgeting, etc.)

Project managers know the people who estimate and trust them.

Managers believe the estimates and act accordingly.
 • Resource allocation follows the estimate.
 • Work can be reprioritized based on the estimates.
Historical Database

Integral to the estimating process. Estimators have an active role in specifying and sustaining the estimating history. Database contains a useful set of completed projects. Any excluded data is clearly identified.
Project Management Metrics

<table>
<thead>
<tr>
<th>Milestone</th>
<th>Plan-date</th>
<th>Actual-date</th>
<th>Plan-cost to date</th>
<th>Actual-cost to date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Req. Accept.</td>
<td>1/31/04</td>
<td>2/12/04</td>
<td>(Effort or $$)</td>
<td></td>
</tr>
<tr>
<td>Project Plan Approval</td>
<td>1/15/04</td>
<td>1/22/04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDR</td>
<td>4/30/04</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample table for diagram on previous slide
Project Product Metrics

<table>
<thead>
<tr>
<th>Item</th>
<th>Estimated</th>
<th>Actual</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code-Size</td>
<td>100</td>
<td>113</td>
<td>KLOC</td>
</tr>
<tr>
<td>Design-Defect</td>
<td>400</td>
<td>373</td>
<td>Count</td>
</tr>
<tr>
<td>Test-Defect</td>
<td>2000</td>
<td>2211</td>
<td>Count</td>
</tr>
<tr>
<td>User-Doc</td>
<td>300</td>
<td>245</td>
<td>Pages</td>
</tr>
</tbody>
</table>

Sample table for diagram on previous slide
Parametric Estimating Process

Knowledge Acquisition

- Completed projects
 - Observed costs and schedules
 - Project descriptions

- Knowledge Application
 - Project descriptions

Reference guidelines

- Candidate producer factors
- Reinterpret, customize and expand
- Patterns
- Reference guidelines
- Project descriptions
- Parameter values

Knowledge Application

- New projects
 - Schedule and manpower constraints

Inverse model execution

- Model execution
 - Cost and schedule estimates
 - Development plans
 - Postmortem analysis
 - Performance results
 - System development

Parameter values

Model execution

- Project descriptions
- Schedule and manpower constraints

Cost and schedule estimates

Development plans

Postmortem analysis

Performance results

System development

Patterns

Candidate producer factors

Reference guidelines

Completed projects

New projects

Project descriptions

Parameter values
Estimate more than once?

A Product Development Life Cycle

<table>
<thead>
<tr>
<th>Product Planning</th>
<th>Specification</th>
<th>Design & Code</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimate #1</td>
<td>Estimate #2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimate #3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Why would you do this?
The Estimating Role

Estimators can take responsibility for many estimating chores.

- Development of budgets
- Project planning
- Project change management
- Bidding on an RFP
- Preparation of an RFP
- Strategic planning
The CMMI Says:

Estimating appears in

Project Planning
 • SG 1 Estimates of project planning parameters are established and maintained.
 - Project planning parameters include all information needed by the project to perform the necessary planning, organizing, staffing, directing, coordination, reporting and budgeting.

And is supported by the Generic Goals (specifically GG2 and GG3)
CMMI Generic Goals

GG2: Institutionalize a Managed Process
- Establish an organizational policy
- Plan the process
- Provide resources
- Assign responsibility
- Train people
- Manage configurations
- Identify and involve relevant stakeholders
- Monitor and control the process
- Objectively evaluate adherence
- Review status with higher level management

GG3: Institutionalize a Defined Process
- Collect improvement information
Sample Estimating Policy

• Process:
 Product development projects will use “SP10: Project Estimate” to provide needed data to the work plan.

• When:
 The Project Estimate will be created within 5 days of acceptance of requirements (ref. SP1: Requirements).

• Who:
 Project Estimate will be prepared by a staff member who has completed Estimating Training and has participated in estimating at least one other project.

• Review:
 Satisfactory performance of Project Estimate will be assessed at Annual Product Development Quality Review
Outline

Purpose of an estimate

Create a standard for estimates

Estimating inputs

Process factors for good estimating

Risk factors in estimating

Wrap up
Product Management

Is this a one-time build?
- Have to have all the requirements at once.
- Customer may “gold-plate” the request.
- Little development time to learn the customer domain

Or multiple releases?
- Negotiate features by release.
- Provides time to learn about customer domain.

Risk mitigation:
- Two estimates – budget and after specification
- Double the time allocated for requirements analysis
Maintenance or Development?

Development never ends
- Same team does maintenance and development
- Same cost account used for maintenance
- Project leader and technical leader are the same

Planned release schedules for development projects
- Professional project management
- Separate cost accounts

Higher Risk

Lower Risk

This?

Development

Maintenance and Enhancement

Or this?

Development

Dev. 2

Dev. 3

Maintenance
History Database Risks

<table>
<thead>
<tr>
<th>Higher Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Every project is different.” Organization has no set milestones. Only code and test have history. Database contains no similar project. Project history is collected long after project.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lower Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common set of milestones is in history database. Small set of WBSs are available and every project is tailored from one of these. History database has similar projects. Project history is recorded as project milestones and deliverables are completed.</td>
</tr>
</tbody>
</table>
People Risks

<table>
<thead>
<tr>
<th>Higher Risk</th>
<th>Lower Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Everyone estimates his own project. Estimating is not part of every project. Limited access to historical data. Estimator has limited experience. Estimator has limited access to other estimators.</td>
<td>Estimator role is an official, recognized one. Estimator has access to other estimators. Estimator understands business domain. Estimator has full access to past projects. Estimator has training and experience.</td>
</tr>
</tbody>
</table>
Principles of Estimating

Estimates are made by people, not by models.

- They require reasoned judgments and commitments to organizational goals that cannot be delegated to any automated process.

All estimates are based on comparisons.

- When people estimate, they evaluate how something is like, and how it is unlike, things that they or others have seen before.

Before people can estimate, they must acquire knowledge.

- They must collect and quantify information from other projects, so that they can place their comparative evaluations on demonstrably sound footings.

Park, Reference 3
References

