
Richard J. Adams
Suellen Eslinger
Karen L. Owens
Mary A. Rich
Software Engineering Subdivision

January 27, 2004
Acknowledgements

This work would not have been possible without assistance from the following:

- **Reviewers**
 - Linda A. Abelson, Software Acquisition and Process Office
 - Peter Hantos, Software Acquisition and Process Office
 - John Cantrell, Software Architecture and Engineering Department

- **Sponsor and Reviewer**
 - Michael Zambrana, USAF Space and Missile Systems Center, Directorate of Systems Engineering

- **Funding Source**
 - Mission-Oriented Investigative Experimentation (MOIE) Research Program (Software Acquisition Task)
Outline

- Background and Definitions
- Scope
 - Software Acquisition Best Practices 2003 Reviewed
 - Scope of Software Acquisition Best Practices 2004
- Software Acquisition Best Practices 2004
 - Early Acquisition Life Cycle Phases
 - Evolutionary Acquisition
- Conclusion
• Definition: **Best Practices** are practices that people with recognized expertise in the subject area have identified through experience as being significant contributors to project success.

• Negative experience or positive experience may identify Best Practices
 - However, one must not be trapped by logical fallacies

• Note that Best Practices (both individually and collectively)
 - Have not necessarily undergone detailed study
 - Have almost never been analytically determined to be “best”
 - Never form an exhaustive set (There is always the possibility of more)
 - Are not static (They change with new experiences and new technologies)
 - Are dependent on the context and environment
Software Acquisition (SA) Best Practices

• Software Acquisition (SA) Best Practices are, therefore, practices that people with recognized software acquisition expertise have identified through experience as being significant contributors to the successful acquisition of software-intensive systems.

• The SA Best Practices presented derive from the research team’s collective experience in the acquisition of software-intensive space systems:
 ❖ Over 60 collective years of software acquisition experience spanning approximately 20 years duration.
 ❖ Many additional years of experience in developing software, managing software development projects, and leading software process improvement efforts.
Characteristics of Space Systems (SS)

- Large software-intensive systems
 - SLOC order of magnitude: \(10^5\) onboard and \(10^6 - 10^7\) on the ground
 - Multi-satellite constellations
 - Multiple ground elements, frequently worldwide
- Complex combinations of hardware and software
- Complex external and internal interfaces
- Usually unprecedented
- High reliability and integrity requirements
- Developed by large teams of multiple contractors

Space Systems Software Acquisition Best Practices must support these characteristics.
Outline

• Background and Definitions
• Best Practice Scope
 ❖ Software Acquisition Best Practices 2003 Reviewed
 ❖ Scope of Software Acquisition Best Practices 2004
• Software Acquisition Best Practices 2004
 ❖ Early Acquisition Life Cycle Phases
 ❖ Evolutionary Acquisition
• Conclusion
SS SA Best Practice Scope

• Single system development contract for a software-intensive system
• Pre- and post-contract award software acquisition activities for the system development contract
• Full life cycle software acquisition activities spanning the contract award boundary
 ❖ Software Risk Management
 ❖ Software Systems Acquisition
SS SA Best Practices for a System Development Contract

Software Acquisition Domain

<table>
<thead>
<tr>
<th>Pre Contract</th>
<th>Post Contract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Establish Program Baseline</td>
<td>Perform Technical Product Reviews</td>
</tr>
<tr>
<td>Obtain Contractual Insight</td>
<td>Perform Software Process Reviews</td>
</tr>
<tr>
<td>Obtain Contractual Commitment</td>
<td>Manage the Development Contract</td>
</tr>
<tr>
<td>Select Capable Contractor Team</td>
<td></td>
</tr>
<tr>
<td>Provide Contract Management Tools</td>
<td></td>
</tr>
</tbody>
</table>

Software Engineering Domain

Contractor
SS SA Best Practice Scope

- Software acquisition activities for the full DoD and National Security Space (NSS) acquisition life cycle
- Pre- and post-contract award software acquisition activities for early DoD and NSS life cycle phases
- Evolutionary acquisition
DoD and NSS Acquisition Models*

NSS Space Acq Policy 03-1

Key Decision Points:
- PHASE A Approval
- PHASE B Approval
- PHASE C Approval

Pre KDP-A Activities
- PHASE A (Study Phase) Concept/Architecture Dev
- PHASE B (Design Phase) Risk Reduction & Design Development
- PHASE C (Build, Test, Launch) Acquisition & Operations Support

Pre-Systems Acquisition
- SRR
- SDR
- PDR
- CDR

Systems Acquisition
- CDR

Sustainment
- IOC

Concept Refinement
- Technology Development
- System Development & Demonstration
- Production and Deployment
- Operations and Support

Milestones:
- Technology Development Approval
- System Development & Demonstration Approval
- Design Readiness Review
- Low-Rate Initial Prod Approval
- Full Rate Production Approval

DoDI 5000.2 (12 May 2003)

* From National Security Space Acquisition Policy #03-01, 6 October 2003.
Outline

• Background and Definitions
• Scope
 ❖ Software Acquisition Best Practices 2003 Reviewed
 ❖ Scope of Software Acquisition Best Practices 2004
• Software Acquisition Best Practices 2004
 ❖ Early Acquisition Life Cycle Phases
 ❖ Evolutionary Acquisition
• Conclusion
Concept Refinement Best Practices
(Pre KDP-A Activities)

Defining:
- Program life cycle
- Initial Government architecture concepts
- Initial Government cost and schedule baselines
- Executable program evolutions
- Global acquisition strategy

NSS Space Acq Policy 03-1
Pre-Systems Acquisition

Key Decision Points:
- PHASE A Approval

Pre KDP-A Activities

Concept Refinement

Milestones:
- Technology Development Approval

DoDI 5000.2 (12 May 2003)
Best Practices for Defining the Program Life Cycle

Use a software-friendly acquisition model

- Evolutionary acquisition is more suited to large, complex software-intensive systems, such as space systems

Tailor the acquisition model for software-intensive system

- SDR level of maturity before MS B/KDP-B
- Selection of a single contractor at appropriate point in software development life cycle
- With or without production phase

Choose software-friendly points in the life cycle for contract actions

- Avoid contract actions in the middle of software development spirals (e.g., post System PDR)
- Develop firm basis for software costing before MS B/KDP-B
Example DoD and NSS Acquisition Models
Tailored for Software-Intensive Systems without Production

NSS Space Acq Policy 03-1 (Adapted)

Key Decision Points:

Pre-Systems Acquisition

PHASE A/B Approval

PHASE B/C Approval

Systems Acquisition

PHASE B/C Design, Development (Build, Test, Launch) & Operations Support

Sustainment

Pre KDP-A Activities

PHASE A/B Concept/ Architecture Dev & System Design

PHASE B/C Design, Development & System Design

Approval

PHASE B/C Concept/ Architecture Dev & System Design

PHASE B/C Design, Development (Build, Test, Launch) & Operations Support

Approval

Concept Refinement

Technology Development & System Design

System Development & Demonstration

Deployment

Milestones:

Technology Development Approval

System Development & Demonstration Approval

Design Readiness Review

Limited Deployment Approval

Full Deployment Approval

DoDI 5000.2 (12 May 2003) (Adapted)
Best Practices for Developing the Initial Government Architecture Concepts

Perform **software-inclusive architecture trade studies**

- With system architecture trades
- Identify and address critical HW/SW architecture issues
- Include major legacy components and COTS software

Include **software** in evaluation of architecture concepts

- Evaluate software evolution and growth capability
- Include software in life cycle cost analysis (COTS software refresh, legacy and new software re-engineering and maintenance)

Select a set of **integrated HW/SW architecture concepts**

- Able to grow with each successive evolution with little expected rework
- Able to integrate each successive evolution with previous evolutions (and legacy system, as applicable)

Government Architecture Concepts

THE AEROSPACE CORPORATION
Best Practices for Developing the Initial Government Cost and Schedule Baseline

Determine realistic SW size estimates for each evolution

- Use Gov’t. HW/SW architecture concept
- Include all SW functionality and infrastructure needed
- Use historical data from similar past programs & early concept study data

Determine realistic SW effort & cost estimates for each evolution

- Include COTS, reuse and newly developed software
- Include tasks not reflected in cost models (e.g., integration of SW components costed separately, COTS)

Determine realistic SW schedule estimates for each evolution

- Include all software effort in schedule
- Never compress software schedule >20% off nominal*

Gov’t. Cost And Schedule Baseline

Best Practices for Defining Executable Program Evolutions

Consider SW implications when defining evolution capabilities

• Analyze feasibility of developing the required software for each evolution
 • Based on realistic software size, effort, cost and schedule estimates
 • Include software cost and schedule estimation risk
• Analyze feasibility of integrating the software in each evolution with all previous evolutions (and legacy system(s), as applicable)
 • Based on integrated hardware/software architecture
 • Analyze impacts of COTS software refresh and legacy software upgrades

Consider SW implications when defining evolution schedules

• Analyze feasibility of overlapping software development schedules for closely spaced evolutions
• Avoid plans that require developing subsequent evolutions on unknown software baselines
• Analyze feasibility of COTS refresh and legacy SW upgrade schedules

Executable Program Evolutions
Best Practices for Developing the Global Acquisition Strategy

Develop plans for computer system technology insertion
- Include COTS HW and SW refresh in each successive evolution
- Understand new computer HW & SW technologies needed for each evolution and study their readiness

Develop plans for evaluation of contractor software capability
- Perform a Government evaluation of contractor team software capability
- Prior to or part of selection of a single development contractor

Develop plans for software support
- Plan for managing multiple baselines (operations and development)
- Plan for integrating software maintenance actions on operational evolutions into evolutions under development
Principal objective of Phase A/B contract(s)* is to develop the information needed for the Government to:

- Solidify the program definition to establish an executable program
- Update the global acquisition strategy, including acquisition plans and products for this and all future evolutions

* Space systems usually have multiple parallel contracts in this phase, with selection of a single development contractor in the next phase (B/C).
SS SA Best Practices for a Phase A/B Contract

Software Acquisition Domain

- Establish Requirements Baseline
- Develop System Architecture Concept
- Reduce Software Risk

Manage the Phase A/B Contract

Pre Contract
- RFP
- Proposal

Post Contract
- Phase A/B Contract

Software Engineering Domain
Best Practices for Establishing the Requirements Baseline

Include software in Gov’t. system performance requirements

- Specialty engineering, especially RMA
- Key Performance Parameters
- Open system architecture
- Design for evolution and growth

Contract for delivery of SW-inclusive reqs. specifications

- Require System and Segment Specifications as CDRL items
- Use System/Subsystem Specification DID (DI-IPSC-81431a)
Best Practices for Developing the System Architectural Design

- With system architecture trades
- Include major software legacy components and COTS software

- Require system architecture as a CDRL item
- Require an integrated HW/SW architecture, defined by multiple architecture views
- Include newly developed, reuse and COTS software

Contract for **software architecture** trade studies

Contract for **delivery of system architecture**
Best Practices for Reducing Software Development Risk

Contract for software product risk reduction
- Studies/prototyping of high risk areas for software, e.g.
 - Mission processing algorithms
 - Mission planning concepts
- Simulation development
- Increase readiness level of computer HW and SW technologies

Contract for software process risk reduction
- Require delivery of Software Development Plan (DID DI-IPSC-81427a)
- Require compliance with robust software development standard
- Enable contractor team to prepare for software capability evaluation

SW Development Risk Reduction
Best Practices for Managing the Phase A/B Contract

- Ensure contractor(s) define software-inclusive reqs. specs.
 - Software systems engineers (contractor and Government) must participate with contractor and Gov’t. systems engineers

- Participate with contractor in software risk reduction
 - Government software acquisition personnel with technical expertise in software product and process engineering must participate

- Ensure contractor(s) define integrated HW/SW architecture
 - Software systems engineers (contractor and Government) must participate with contractor and Gov’t. systems engineers

Managing the Contract
Evolutionary Acquisition Strategy - 1

Global Acquisition Strategy

Acquisition Planning

Pre A

A/B

B/C

Increment 1

B/C

(O&S)

Feedback

IOC

A/B

B/C

Increment 2

(O&S)

A/B

B/C

Increment 3

(O&S)

Ongoing or near term

Future planning

The Aerospace Corporation
Best Practices for Updating the Global Acquisition Strategy

Update **SW-inclusive program baseline**
- Software-inclusive system requirements
- Integrated HW/SW architecture
- Realistic software size, effort, cost & schedule estimates for each evolution

Update **definition of SW-friendly evolutions**
- Evolution capabilities, schedules and integration strategies
- COTS software refresh and legacy software upgrades

Update **software-specific plans**
- Software support strategy
- Contractor team software capability evaluations
- Software technology insertion
- Software transition to operations

Updated Global Acquisition Strategy
Software Acquisition Risk Management

• Continuous software acquisition risk management
 • Across the entire acquisition life cycle
 • Across all evolutions
 • Within each ongoing evolution
• Program level risk management and contractor development risk management are necessary but not sufficient

Software Systems Acquisition

• Integrate software acquisition with the system acquisition process
 • From capability needs identification through system retirement
 • Especially during early acquisition life cycle phases
Outline

• Background and Definitions
• Scope
 ❖ Software Acquisition Best Practices 2003 Reviewed
 ❖ Scope of Software Acquisition Best Practices 2004
• Software Acquisition Best Practices 2004
 ❖ Early Acquisition Life Cycle Phases
 ❖ Evolutionary Acquisition
• Conclusion
Conclusion

- Software acquisition best practices do not guarantee success
 - They are not a panacea!
- Using best practices, however, can reduce risk in complex software-intensive system acquisitions
- Evolutionary acquisition, in particular, is a complex strategy that requires careful planning and execution in order to achieve its anticipated benefits
- Software acquisition best practices will be most effectively implemented if done in the context of a software acquisition process improvement program
 - Based on experiences with software development

Section 804 of the FY03 Defense Authorization Act requires the establishment of software acquisition process improvement programs.
Back-Up Charts

- Software Acquisition Best Practices 2003
- Acronym List
- Author Contact Information
Best Practices for Establishing the Program Baseline

Perform software architecture-inclusive trade studies

- With system architecture trades
- Include major legacy components
- Supports Government software architecture baseline selection

Include software in system performance requirements

- Specialty engineering, esp. RMA
- Key Performance Parameters
- Open system architecture

Determine realistic, independent baseline software estimates

- Size, effort, cost and schedule
- COTS, reuse and newly developed
- Tasks not reflected in cost models
- Realism especially critical for evolutionary acquisition
Best Practices for Obtaining Contractual Insight

Require **key** software technical & management deliverables

- Highest risk reduction potential:
 - Plans (development, build, transition)
 - Requirements & Architecture
 - Test plans, procedures & reports
 - Metrics reports
 - Delivery, installation & maintenance documentation
- Use electronic delivery

Require **timely** electronic access to **all** software products

- Requirements
- Architecture, Design
- Implementation (including code)
- Integration and Verification Testing
- Intermediate and Final Products

Contractual Insight

Require **software level** technical & management reviews

- In addition to system reviews
Best Practices for Obtaining Contractual Commitment

Mandate compliance with robust full life cycle SW dev. standard

• For example, EIA/IEEE J-STD-016

Require contractor commitment to Software Development Plan

• Include commitment in Integrated Master Plan (IMP)

Contractual Commitment
Best Practices for Selecting a Capable Software Contractor Team

Evaluate software capability as part of source selection

- Evaluate software capability of offeror teams
 - Individual team member evaluation insufficient
- Evaluate software capability/processes as subfactor
 - Under Mission Capability factor
 - Weight according to software risk
- Evaluate teams’ proposed software processes
 - Corporate and past project process evaluation insufficient

Evaluate software architecture with system design

- Evaluate major HW/SW architecture issues (e.g., space-ground trades, reuse of legacy components)

Evaluate realism of cost and schedule bids

- Suspect extremes of productivity, COTS & reuse, & low lines of code

Capable Software Contractor Team

Incentivize software quality,* not just cost and schedule

- Use award and incentive fee plans
- Reward adherence to
 - Defined software processes
 - Software process improvement
- Reward timely and adequate response to Government comments
- Reward low rework rates
- Reward meeting RMA requirements post delivery/launch

Mandate periodic team software capability appraisals

- Relate results and improvement actions directly to award fee

* Quality in this context is producing work products that do not require rework in successor activities.
Best Practices for Performing Technical Product Reviews

Perform in-depth technical reviews of software products

- IPTs, TIMs, working groups, peer reviews, etc.
- Software Level Technical Reviews
- High risk/critical software products
- Key software technical deliverables
- Focus on areas of highest risk

Monitor software integration and verification adequacy

- Begin at the build level
- Focus on areas of highest risk
- Focus on early performance analysis results and meeting KPPs

Include users/operators in all technical review activities

- Focus on operational suitability of evolving software-intensive system

Technical Product Reviews
Best Practices for Performing Software Process Reviews

Review **effectiveness** of contractor team’s SW processes

- Review team’s adherence to defined software processes
 - Identify adherence deficiencies
 - Assist in deficiency correction
- Evaluate effectiveness of defined SW processes
 - Identify process deficiencies
 - Assist with process improvement
- Level 2 & 3 CMMI®/CMM® adherence for an individual team member may not be sufficient*

Perform **periodic team** software capability appraisals

- During contract performance
- Support for significant program or award fee milestones

* CMM and CMMI are registered trademarks of Carnegie Mellon University.
Best Practices for Managing the Development Contract

Use incentive/award fees aggressively
- Motivate good software practices
- Focus on quality

Ensure satisfaction of software –inclusive requirements
- Especially RMA

Apply proactive quantitative management
- Ensure a comprehensive software/system metrics program balanced across information categories
 - Include leading quality indicators (e.g., rework)
 - Perform cross-metric analysis
- Earned value alone is insufficient

Perform periodic independent assessments
- Support for significant program or award fee milestones
- Act aggressively on findings

Managing the Contract
Acronyms and Abbreviations - 1

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acq</td>
<td>Acquisition</td>
</tr>
<tr>
<td>CDR</td>
<td>Critical Design Review</td>
</tr>
<tr>
<td>CDRL</td>
<td>Contract Data Requirements List</td>
</tr>
<tr>
<td>CMM®</td>
<td>Capability Maturity Model®</td>
</tr>
<tr>
<td>CMMI®</td>
<td>Capability Maturity Model® Integration℠</td>
</tr>
<tr>
<td>COTS</td>
<td>Commercial Off the Shelf</td>
</tr>
<tr>
<td>DB</td>
<td>Database</td>
</tr>
<tr>
<td>Dev</td>
<td>Development</td>
</tr>
<tr>
<td>DID</td>
<td>Data Item Description</td>
</tr>
<tr>
<td>DoD</td>
<td>Department of Defense</td>
</tr>
<tr>
<td>DoDI</td>
<td>DoD Instruction</td>
</tr>
<tr>
<td>EIA</td>
<td>Electronic Industries Alliance</td>
</tr>
<tr>
<td>FY</td>
<td>Fiscal Year</td>
</tr>
<tr>
<td>Gov’t.</td>
<td>Government</td>
</tr>
<tr>
<td>GUI</td>
<td>Graphical User Interface</td>
</tr>
<tr>
<td>HW</td>
<td>Hardware</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronics Engineers</td>
</tr>
</tbody>
</table>
Acronyms and Abbreviations - 2

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMP</td>
<td>Integrated Management Plan</td>
</tr>
<tr>
<td>IPT</td>
<td>Integrated Product Team</td>
</tr>
<tr>
<td>IOC</td>
<td>Interim Operational Capability</td>
</tr>
<tr>
<td>J</td>
<td>Joint</td>
</tr>
<tr>
<td>KDP</td>
<td>Key Decision Point</td>
</tr>
<tr>
<td>KPP</td>
<td>Key Performance Parameter</td>
</tr>
<tr>
<td>MOIE</td>
<td>Mission-Oriented Investigation and Experimentation</td>
</tr>
<tr>
<td>MS</td>
<td>Milestone</td>
</tr>
<tr>
<td>NSS</td>
<td>National Security Space</td>
</tr>
<tr>
<td>O&S</td>
<td>Operations and Support</td>
</tr>
<tr>
<td>OSD</td>
<td>Office of the Secretary of Defense</td>
</tr>
<tr>
<td>PDR</td>
<td>Preliminary Design Review</td>
</tr>
<tr>
<td>RFP</td>
<td>Request for Proposal</td>
</tr>
<tr>
<td>RMA</td>
<td>Reliability, Maintainability, Availability</td>
</tr>
<tr>
<td>SA</td>
<td>Software Acquisition</td>
</tr>
<tr>
<td>SDP</td>
<td>Software Development Plan</td>
</tr>
<tr>
<td>SDR</td>
<td>System Design Review</td>
</tr>
</tbody>
</table>
Acronyms and Abbreviations - 3

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLOC</td>
<td>Source Lines of Code</td>
</tr>
<tr>
<td>SM</td>
<td>Service Mark</td>
</tr>
<tr>
<td>SRR</td>
<td>System Requirements Review</td>
</tr>
<tr>
<td>SS</td>
<td>Space System</td>
</tr>
<tr>
<td>STD</td>
<td>Standard</td>
</tr>
<tr>
<td>SW</td>
<td>Software</td>
</tr>
<tr>
<td>TIM</td>
<td>Technical Interchange Meeting</td>
</tr>
<tr>
<td>USAF</td>
<td>United States Air Force</td>
</tr>
</tbody>
</table>
Author Contact Information

- **Richard J. Adams**
 - Senior Engineering Specialist
 - Software Engineering Subdivision, The Aerospace Corporation
 - (310) 336-2907
 - Richard.J.Adams@aero.org

- **Suellen Eslinger**
 - Distinguished Engineer
 - Software Engineering Subdivision, The Aerospace Corporation
 - (310) 336-2906
 - Suellen.Eslinger@aero.org

- **Karen L. Owens**
 - Senior Engineering Specialist
 - Software Engineering Subdivision, The Aerospace Corporation
 - (310) 336-5909
 - Karen.L.Owens@aero.org

- **Mary A. Rich**
 - Principal Director
 - Software Engineering Subdivision, The Aerospace Corporation
 - (310) 336-5313
 - Mary.A.Rich@aero.org