USING PILOTS TO ASSESS THE
VALUE AND APPROACH OF CMMI
IMPLEMENTATION

Goddard Space Flight Center
(GSFC)

Sally Godfrey, James Andary, Linda Rosenberg
Agenda

- Background
 - NASA Improvement Initiatives
 - GSFC Improvement Plan
 - GSFC/Phase 1
 - Phase 1 Goals
 - Choice of Pilot Areas

- CMMI Pre-Appraisals
 - Goals/Scope
 - Pre-Appraisals

- Evaluation of Phase 1
 - Advantages/Disadvantages of Pre-Appraisal Approach
 - Lessons Learned
The NASA Software & Systems Engineering Initiatives

Software Initiative Goal: Advance software engineering practices (development, assurance, and management) to effectively meet the scientific and technological objectives of NASA.

4 Strategies:
- Process and Product Improvement
- Safety, Reliability, and Quality
- Infuse Research
- Skill of Workforce

Systems Engineering Initiative: “Define and pilot a methodology for assessment of the systems engineering capability, which addresses knowledge and skill of the workforce, processes, and tools and methodology.”..... NASA Chief Engineer
GSFC Software Development Process Improvement Plan

Developed Software Plan to improve the processes and practices in use at GSFC using the Capability Maturity Model Integrated (CMMI) as a measure of progress
- Focuses on Mission Critical Software
- Signed by GSFC Director

Are working with Systems Engineering to help them pilot CMMI

Software Long Term Goals
- Increase percentage of projects that are on-time and within cost by at least 10%
- Increase productivity by at least 5%
- Decrease cycle time by 10-20%
- Reduce error rate after delivery by at least 20%
Implementation Phases in GSFC’s Improvement Plan

Phase 1: Pilot Phase (FY02)
- Benchmark several representative GSFC areas
- Estimate effort, cost to improve identified gaps
- Evaluate implementation approach

Phase 2: Implementation Phase (FY03-FY07)
- Implementation of PI on all critical projects
- Begin by working with new projects to field improvements
- Eventual target …CMMI Level 3

Phase 3: Maintain Level and Continue Improvement
- Include other less critical areas? (e.g. science processing)

<table>
<thead>
<tr>
<th>FY02</th>
<th>FY03</th>
<th>FY04</th>
<th>FY05</th>
<th>FY06</th>
<th>FY07</th>
<th>FY08</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHASE 1</td>
<td>PHASE 2</td>
<td>PHASE 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Phase 1 - FY02 Goals

• Benchmark several areas against the CMMI model (Where are we?)

• Learn what is involved in using CMMI as a model for improvement (How hard is it? Does it make sense?)

• Get a basis for estimating the cost of a process improvement program that achieves CMMI Level 3 (How expensive is it?)

• Assess our planned implementation approach (Are we doing this the right way?)
Pre-Appraisal Areas
Selected for Phase 1

3 Pre-Appraisals Completed in FY02:
1. Flight Software (11/01)
2. Project Level-Focus on Systems Engineering & Acquisition (4/02)
3. Ground Software (9/02)

Note: The Instrument area appraisal was not done due to lack of available projects and time constraints
CMMI Pre-Appraisals During Phase 1
Goals of the Pre-Appraisals

- How long does it take?
- How much preparation?
- SE & CMMI?
- How does CMMI apply at GSFC?
- Where are we?
- Can we do it?
Key Points for Pre-Appraisals

• EPG tried to minimize time required from project participants

• Pre-appraisals were conducted less formally than SCAMPI
 – More reliance on interviews
 – Less verification of information and document review
 – No maturity ratings determined

• Pre-appraisal methodology evolved during course of year

• Findings were the result of team consensus, supported by multiple data points from multiple sessions.

• Results pre-appraisals were reported as findings of strengths and improvement opportunities in the CMMI Process Areas.
Phase 1 Pre-Appraisals

- **Pre-Appraisal #1: Flight Software -2 projects**
 - Both projects in-house, integrated contractor/civil servant teams
 - One project complete with all documentation in place
 - Other project at PDR point - Development started under ISO system

- **Pre-Appraisal #2: Flight Projects -3 projects**
 - Project 1: Start 2000, In Formulation, Large budget, International with multiple spacecraft, Core spacecraft will be in-house developed
 - Project 2: Start ‘91, In Implementation, (CDR in ‘99), L-’04, Large budget, ~30 Civil Servants , Multiple contractors
 - Project 3: Part of program with 3 project series, Several launches complete, (turn-key), Spacecraft budget about 1/2 of other two, mostly contractors, few Civil Servants

- **Pre-Appraisal #3: Ground Software -2 projects**
 - Both projects in-house, integrated contractor/civil servant teams
 - One project complete with all documentation in place
 - Other project in testing - Development started under ISO system
Differences in the Pre-Appraisals

<table>
<thead>
<tr>
<th>Level of Focus</th>
<th>#1 Subsystem</th>
<th>#2 Code 400 Project</th>
<th>#3 Subsystem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emphasis</td>
<td>Software Development</td>
<td>Systems Engineering, Acquisition</td>
<td>Software Development</td>
</tr>
</tbody>
</table>
| Mode | Discovery
 -1/2 Doc. Review
 -1/2 Interviews | Discovery
 -Heavy emphasis on interviews | Verification
 -Few interviews
 -Doc. Review |
<p>| Use of PIIDs? | No | No | Yes |
| Draft Findings Briefing Held? | No | Yes | Yes |
| Days Spent | 6 Days | 9 Days | 13 Days |
| Interviewee Preparation | Minimal | Gave sample questions | Minimal |
| Interviewed Support Orgs. | No | Yes | No |</p>
<table>
<thead>
<tr>
<th>RM</th>
<th>Direct Artifact</th>
<th>Indirect Artifact</th>
<th>Affirmation</th>
<th>Char.</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM SP 1.1-1</td>
<td>Requirements Doc</td>
<td>Req. Q & A</td>
<td>PM-affirms</td>
<td>FI</td>
</tr>
<tr>
<td>RM SP 1.2-1</td>
<td>Signatures on Req.</td>
<td>Presentation Mat.</td>
<td></td>
<td>FI</td>
</tr>
<tr>
<td>RM SP 1.3-1</td>
<td>Req. Change History</td>
<td>Slide 11 of CDR</td>
<td>PM affirms</td>
<td>FI</td>
</tr>
<tr>
<td>RM SP 1.4-1</td>
<td>Test Matrix (partial)</td>
<td></td>
<td>PM affirms</td>
<td>LI</td>
</tr>
<tr>
<td>RM SP 1.5-1</td>
<td>Slide 14 of CDR</td>
<td>Done sometimes</td>
<td></td>
<td>PI</td>
</tr>
<tr>
<td>GP 1.1</td>
<td>Req. Doc., DB’s….</td>
<td></td>
<td>PM affirms</td>
<td>FI</td>
</tr>
<tr>
<td>GP 1.2</td>
<td></td>
<td></td>
<td></td>
<td>NI</td>
</tr>
</tbody>
</table>

Key:
FI: Fully Implemented
LI: Largely Implemented
PI: Partially Implemented
NI: Not Implemented
Appraisal Participants

(Interviewees)

<table>
<thead>
<tr>
<th>Role</th>
<th>#1</th>
<th>#2</th>
<th>#3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line Manager</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Managers/Instr. Mgrs</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Senior Systems Engineers</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Software Manager</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Requirements Developers</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Software Developers</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Testers</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>QA Representatives</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Configuration Managers</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Schedulers</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Contracting Officers</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Training Coordinators</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>EPG Members</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Appraisal Teams

<table>
<thead>
<tr>
<th>Appraisal Team</th>
<th>#1</th>
<th>#2</th>
<th>#3</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEI-Authorized Lead Appraisers</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>GSFC Appraisal Team Members (Total)</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

GSFC Appraisal Team Characteristics:

<table>
<thead>
<tr>
<th>Experience: All were EPG Members</th>
<th>#1</th>
<th>#2</th>
<th>#3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Took Introduction to CMMI</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Took Intermediate CMMI</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Background:</th>
<th>#1</th>
<th>#2</th>
<th>#3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software Development</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Systems Engineering</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quality Assurance</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Process Flow of Pre-Appraisal #1

<table>
<thead>
<tr>
<th>Pre On-Site</th>
<th>Day 1</th>
<th>Day 2 - 3</th>
<th>Day 4</th>
<th>Day 5</th>
<th>Post On-Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyze Requirements</td>
<td>Lead Assessor Opening</td>
<td>Conduct Interviews</td>
<td>Conduct Interviews and</td>
<td>Prepare Final Findings</td>
<td>Produce Reports and Support</td>
</tr>
<tr>
<td></td>
<td>Briefing</td>
<td></td>
<td>Review Documents</td>
<td></td>
<td>Follow-on Activities</td>
</tr>
<tr>
<td>Develop Appraisal Plan</td>
<td>Conduct Interviews</td>
<td>Review Documents</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select and Prepare Team</td>
<td>Conduct Interviews</td>
<td>Consolidate Information</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obtain Organizational</td>
<td></td>
<td></td>
<td>Work to reach consensus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select and Prepare</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prepare for Data Collection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key Points:
- Little advance preparation
- Discovery mode with half interviews, half doc review
- No draft findings
Process Flow of Pre-Appraisal

Pre On-Site
- Analyze Requirements
- Develop Appraisal Plan
- Select and Prepare Team
- Obtain Organizational Information
- Select and Prepare Participants
- Prepare for Data Collection

Day 1
- CMMI Overview Training
- Conduct Interviews
- Conduct Interviews
- Conduct Interviews
- Conduct Interviews

Day 2 - 3
- GSFC, SE Overview Presentations
- Review Documents
- Consolidate Information
- Conduct Interviews and Review Documents
- Consolidate Information

Day 4
- Consolidate Information
- Conduct Interviews and Review Documents
- Consolidate Information
- Deliver Draft Findings

Day 5
- Prepare Final Findings
- Deliver Final Findings
- Prepare Final Findings
- Deliver Final Findings
- Deliver Final Findings

Post On-Site
- Produce Reports and Support Follow-on Activities

Key Points:
- More advance preparation
- Discovery mode-heavy reliance on interviews
- Draft findings
Process Flow of Pre-Appraisal

#3

Pre On-Site
- Analyze Requirements
- Develop Appraisal Plan
- Select Team
- Conduct Team Training
- Obtain Organizational Information/Docs

Pre-On-Site
- Review Documentation
- Fill in PIIDs
- Obtain Additional Docs

Day 1
- Discussion of Projects for Appraisers
- Document Review
- Fill in PIIDs
- Identify Missing Information

Day 2-3
- Conduct Interviews
- Add interview Info to PIIDs
- Consolidate Information-Begin Assessing Gaps

Day 4
- Review Documents and Complete PIIDs
- Consolidate Information
- Deliver Draft Findings

Day 5
- Prepare Final Findings
- Deliver Final Findings

Post On-Site
- Produce Reports and Support Follow-on Activities

Key Points:
- Heavy advance preparation
- Verification mode-interviews used to verify & complete PIIDS
- Draft findings
Evaluation of Phase 1

What did we learn?
Would we choose the same approach again?
Advantages of CMMI Pre-Appraisal Approach

• CMMI Pre-Appraisals provided fairly accurate benchmark of state of all three areas evaluated

• Pre-appraisal was a “quick-look” - Provided a wealth of information in a short period of time (1 week)

• Involvement of external appraisers helps facilitate cooperation from projects; Provides credibility for Senior Managers

• Pre-appraisal was excellent training for internal appraisers involved

• Future pre-appraisals and benchmarking could now be done by internal appraisers (Have experience base)
Disadvantages of CMMI Pre-Appraisal Approach

- Whole pre-appraisal approach was very time-consuming
 - Majority of our resources expended on convincing projects to participate, appraisal preparation, appraisals
 - Little time left to actually support improvement activities with projects
- More difficult to estimate costs of addressing weaknesses (doing actual improvements) than anticipated
- Difficult to show Senior Management that projects were “better” because we were doing pre-appraisals, not process improvement (*Early wins are important!*)

(Early wins are important!)
Lessons Learned on Pre-Appraisals

• It takes time to prepare ……
 – Scheduling interviews hard- allow lots of time
 – Assign internal appraisers process areas
 – Gather documents, fill out PIIDS
 – Prepare interviewees
 – Set expectations for pre-appraisal team
 – Brief pre-appraisal team

• Choose projects in various phases
 – Early phase: more opportunity to change
 – Mid-stream: probably typical of current processes
 – Late or done: all documentation in place
Lessons Learned

- Choose interviewees to cover all process areas
- Use of PIIDs captured more information on strengths & weaknesses by Specific Practice for later improvement work
 - Need a process for completing PIIDS
 - Too time intensive for Projects to fill out, but some EPG/Project interaction necessary
 - Projects didn’t have CMMI knowledge to complete
- Conduct a draft findings briefing
- Knowledge of org. process structure more important than CMMI knowledge
Next Steps

• Prioritize improvement opportunities based on the Goddard business direction.
 – Use Continuous Model of CMMI
 – Focus on improving smaller part of s/w organization
 – Expand using assets developed as resources
• Continue working with the NASA Systems Engineering Working Group on the use of CMMI for evaluating systems engineering capability.
 – Start small pilot in systems engineering area
• Cost estimates for next year will be based on WBS developed to address gaps identified in appraisals
Contact Information

Sara (Sally) Godfrey
Goddard Space Flight Center
Code 583
Greenbelt, MD. 20771
301-286-5706
Sara.H.Godfrey.1@gsfc.nasa.gov

James Andary
Goddard Space Flight Center
Code 530
Greenbelt, MD 20771
301-286-2269
James.F.Andary.1@gsfc.nasa.gov

Dr. Linda Rosenberg
Goddard Space Flight Center
Code 100
Greenbelt, MD 20771
301-286-5710
Linda.H.Rosenberg.1@gsfc.nasa.gov
Back-up Slides
Goal: Advance software engineering practices (development, assurance, and management) to effectively meet the scientific and technological objectives of NASA.

Strategy 1. Implement a continuous software process and product improvement program across NASA and its contract community.

Strategy 2. Improve safety, reliability, and quality of software through the integration of sound software engineering principles and standards.

Strategy 3. Improve NASA’s software engineering practices through research.

Strategy 4. Improve software engineers' knowledge and skills, and attract and retain software engineers.
Goddard’s Matrix Structure

GSFC

- Code 100 Sr. Mgmt. Training
- Code 200 Procurement
- Code 300 Quality Assurance, IV&V
- Code 400 Projects
- Code 500 Applied Engineering
- Code 600 Space Science
- Code 900 Earth Science

- Project 1
 - Contract Officer
 - QA
- Project 2
 - Software
 - Electrical
- Project 3
 - Mechanical
 - Science Instruments
Example Process Area: Requirements Management

SG 1: Manage Requirements

- SP 1.1: Obtain an Understanding of the Requirements
- SP1.2: Obtain Commitment to the Requirements
- SP1.3: Manage Requirements Changes
- SP1.4: Maintain Bi-directional Traceability of Requirements
- SP1.5: Identify Inconsistencies between Project Work & Reqmts

GG 2: Institutionalize a Managed Process

- GP 2.1: Establish an Organizational Policy
- GP 2.2: Plan the Process
- GP 2.3: Provide Resources
- GP 2.4: Assign Responsibility
Example Process Area: Requirements Management

GG 2: Institutionalize a Managed Process
- GP 2.5: Train People
- GP 2.6: Manage Configurations
- GP 2.7: Identify & Involve Relevant Stakeholders
- GP 2.8: Monitor and Control the Process
- GP 2.9: Objectively Evaluate Adherence
- GP 2.10: Review Status with Higher Level Management

GG 3: Define a Managed Process
- GP 3.1: Establish a Defined Process
- GP 3.2: Collect Improvement Information
Pre-Assessment Scope

- **CMMI® Components Reviewed:**
 - Maturity Levels 2 and 3 Process Areas
 - Specific Goals
 - Specific practices are evaluated to determine specific goal coverage based on evidence of weaknesses, improvement activities, strengths and alternative practices.

- **CMMI® Components **NOT** Reviewed: (Generic Goals)**
 - Actual documented “process” being used on projects
 - Activities, process inputs & outputs, deliverables, roles & responsibilities, measurements, work instructions, templates, tailoring, why & when, etc.
 - Training for use of process
 - Use of process and adherence to process
 - Planning and monitoring of process
 - Providing resources for process
Appraisal Goals for Systems Engineering Pre-Assessment

- Determine the applicability of the CMMI Model for evaluating systems engineering and acquisition activities at Goddard

- Baseline the systems engineering organization against the requirements in the model

- Gain experience in the use of the model as a baselining tool
Level 2 Process Areas

- Requirements Management
- Project Planning
- Project Monitoring & Control
- Supplier Agreement Management
- Measurement & Analysis
- Process & Product Quality Assurance
- Configuration Management
General Process Requirements for Each Process Area at Level 2

Document project level processes so that all projects have a starting point for these activities.

Plan and manage these process activities, including:
- Institute an organizational policy
- Plan the process
- Provide resources
- Assign responsibility
- Train people
- Manage configurations
- Identify & involve relevant stakeholders
- Monitor & control the process
- Objectively evaluate adherence
- Review status with higher level management
Level 3 Process Areas

- Requirements Development
- Technical Solution
- Product Integration
- Verification
- Validation
- Organizational Process Focus
- Organizational Process Definition
- Organizational Training
- Integrated Project Management
- Risk Management
- Integrated Teaming (not assessed)
- Integrated Supplier Management
- Decision Analysis and Resolution
- Organizational Environment for Integration (not assessed)
General Process Requirements for Each Process Area at Level 3

Document organization level processes (and tailoring guidelines) so that all projects have a starting point for all process activities.

Plan and manage these process activities, including:
- Institute an organizational policy
- Plan the process
- Provide resources
- Assign responsibility
- Train people
- Manage configurations
- Identify & involve relevant stakeholders
- Monitor & control the process
- Objectively evaluate adherence
- Review status with higher level management
- Collect information for process improvement
Authority

Directed by NASA Chief Engineer:

“…the SEWG is expected to…define and pilot a methodology for assessment of the systems engineering capability, which addresses knowledge and skill of the workforce, processes, and tools and methodology.”

Deputy Chief Engineer for Systems Engineering (Nov. 1, 2000)

Promoted by the agency Software Working Group (SWG)
– Software Initiative being implemented across agency
– CMM and CMMI-SW programs at all Centers

Studied by the agency Systems Engineering Working Group (SEWG)
– Assessment data from GSFC will be evaluated by the SEWG to determine if CMMI is appropriate for Systems Engineering implementation agency-wide.
MOG

- Provide oversight and direction to the EPG and AMG and assist in establishing priorities
- Work with the EPG in communicating process issues and industry practices to GSFC senior management
- Represent their constituent organizations in reaching consensus on GSFC institutional software policies and standards for both in-house and contractor-supplied software
- Review and concur on all GSFC software and system policies and guidelines prior to final publication
For the pilots and during the rollout to other GSFC entities the EPG will:

- Lead the continuous definition, maintenance and improvement of software process policies, procedures, and best practices including the development and maintenance of the GSFC software development process improvement plan.
- Facilitate software process assessments.
- Arrange for and support training and continuing education related to process improvements for engineers, line managers, project management, and GSFC senior management.
- Define and maintain metrics to track, monitor, and assess the status of focused improvement efforts and pilot studies.
- Provide status information and evaluations of the improvement activities to all levels of management.
- Lead the institutional response, where appropriate, to software/systems-related Nonconformance Reports.
- Maintain a collaborative working relationship with practicing software/systems engineers to obtain, plan, and install new practices and technologies.
- Provide software engineering consultation to development projects and management.
Develop and maintain the GSFC “Develop Software and Systems Products” web site which includes the software development process improvement library,

Develop and maintain a database of GSFC software process and product metrics,

Act as the clearinghouse for software metrics reported to NASA HQ,

Develop insights into the metrics sources that will enhance the consistency and effectiveness of interpretation,

Maintain a database of GSFC software product characteristics in order to understand process metrics, encourage software reuse, and assist in identifying special expertise, and

Establish and manage a service that provides software engineering tools to projects in cases where a single GSFC vendor interface and institutional supplier is appropriate.
CMMI and ISO

- ISO is a standard, CMMI is a model
- ISO is broad- focusing on more aspects of the business. Initially for manufacturing
- CMMI is “deep”- provides more in-depth guidance in more focused areas (Software/Systems Engineering/Software Acquisition-SW/SE/SA)
- Both tell you “what” to do, but not “how” to do it
- But CMMI tells you what “expected” practices are for a capable, mature organization
- CMMI provides much more detail for guidance than ISO by including an extensive set of “best practices”, developed in collaboration with industry/gov/SEI
 - CMMI provides much better measure of quality of processes; ISO focuses more on having processes
 - CMMI puts more emphasis on continuous improvement
 - CMMI allows you to focus on one or a few process areas for improvement (It’s a model, not a standard, like ISO) --Can rate just one area in CMMI
 - CMMI and ISO are not in conflict: ISO helps satisfy CMMI capabilities; CMMI more rigorous
Capability Maturity Model Model Integrated (CMMI)-Staged

Capability Levels and Process Areas

<table>
<thead>
<tr>
<th>Level</th>
<th>Process Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Optimizing</td>
<td>Organization innovation and deployment</td>
</tr>
<tr>
<td></td>
<td>Causal analysis and resolution</td>
</tr>
<tr>
<td>4 Quantitatively Managed</td>
<td>Organizational process performance</td>
</tr>
<tr>
<td></td>
<td>Quantitative project management</td>
</tr>
<tr>
<td>3 Defined</td>
<td>Requirements development</td>
</tr>
<tr>
<td></td>
<td>Technical solution</td>
</tr>
<tr>
<td></td>
<td>Product integration</td>
</tr>
<tr>
<td></td>
<td>Verification</td>
</tr>
<tr>
<td></td>
<td>Validation</td>
</tr>
<tr>
<td></td>
<td>Organizational process focus</td>
</tr>
<tr>
<td></td>
<td>Organizational process definition</td>
</tr>
<tr>
<td></td>
<td>Organizational training</td>
</tr>
<tr>
<td></td>
<td>Integrated project management</td>
</tr>
<tr>
<td></td>
<td>Risk management</td>
</tr>
<tr>
<td></td>
<td>Decision analysis and resolution</td>
</tr>
<tr>
<td></td>
<td>Integrated Supplier Management</td>
</tr>
<tr>
<td></td>
<td>Integrated Teaming</td>
</tr>
<tr>
<td>2 Managed</td>
<td>Requirements management</td>
</tr>
<tr>
<td></td>
<td>Project planning</td>
</tr>
<tr>
<td></td>
<td>Project monitoring and control</td>
</tr>
<tr>
<td></td>
<td>Configuration Management</td>
</tr>
<tr>
<td></td>
<td>Supplier agreement management</td>
</tr>
<tr>
<td></td>
<td>Measurement and analysis</td>
</tr>
<tr>
<td></td>
<td>Product & Process Quality Assurance</td>
</tr>
<tr>
<td>1 Initial</td>
<td></td>
</tr>
</tbody>
</table>

Diagram

- SW - CMM
- SE - CMM
- CMMI
- SA - CMM