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Trademarks and Service Marks

The following are service marks of Carnegie Mellon University.
• CMM IntegrationSM

• CMMISM

• Team Software ProcessSM

• TSPSM

• Personal Software ProcessSM

• PSPSM

The following are registered trademarks of Carnegie Mellon University.
• Capability Maturity Model®

• CMM®
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Defective Software is not Secure
Common software defects are a principal cause of
software security incidents.

• Over 90% of software security incidents are due to
attackers exploiting known software defect types.1

• Analysis of forty-five e-business applications showed
that 70% of the security defects were design defects.2

Conclusion: there is no such thing as a poor quality secure
system.

• CERT/CC
• "The Security of Applications: Not All Are Created Equal", by Andrew Jacquith.
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Security Design Defects
Examples
• Failure to authorize and authenticate users
• Failure to validate user input
• Failure to encrypt and/or protect sensitive data

Everyday software “bugs” are also a major risk.

For example, a buffer overflow can cause system failure,
or allow a hacker to take control of your system.

Many common defect types can produce a buffer overflow.
• declaration error
• logic errors in loop control or conditional expression
• failure to validate input
• interface specification error
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The Software Quality Problem
Software quality is highly variable and generally poor in
non-mission critical systems.

Widely-used operating systems and applications software
are known to have more than 2 defects per KSLOC, or
2000+ defects per million SLOC.

If only 5% of these defects are potential security concerns,
there are 100 vulnerabilities per million SLOC.
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Software Practice and Quality
Software is the only modern technology that ignores
quality until test.  Typically, software engineers
• do not plan their own work
• race through requirements and design
• do the design while coding

These practices introduce volumes of defects.
• Experienced engineers inject a defect

every 7 to 10 lines of code.
• For even moderate-sized systems,

this amounts to thousands of defects.
• Most of these defects must be

found in test.
• This usually takes about half of the

development schedule.
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The Problem with Testing
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Principles of Software Engineering
Current software practice violates well understood
principles of software engineering.

Examples of software engineering principles
• the need for accurate plans
• the importance of detailed, verifiable designs
• early defect removal
• effective inspections
• focus on quality throughout

Why are these principles not applied?
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Principles Are Not Enough
Principles are easy to understand, but harder to follow.

To apply these principles in practice you also need
• a supportive infrastructure and environment
• an operational process (rules and steps) to put the

principles into practice
• a measurement system to manage and control the

result

Software engineers also need to be convinced of the
benefits of disciplined software engineering methods.
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Design Principles for Secure Applications

The principles for producing secure applications are also
well known and easy to understand.

Examples
• Authorize and authenticate all users
• Mistrust all user input
• Encrypt sensitive data from login to logout
• Protect persistent data
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What is the Issue?
Lack of understanding is not the issue.

A lack of data is not the issue. A vast amount of incident-
specific and system-specific data exists.

Training is not the issue. Training is available for
• writing secure applications
• network administration

Support is not the issue. There are emergency response
centers (including the CERT/CC), guidelines, checklists,
best practices, etc.
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More Is Needed
With all the information and resources available, why is
security still an issue?

Maybe there is a need for more.
• an environment that fosters good practice
• operational processes based on engineering principles
• disciplined practitioners that adhere to these principles
• predictive measures
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The Team Software Process -1
The Team Software Process (TSP) is an operational
process designed to support well-established principles of
software engineering.

The principal objectives of the TSP are
• help software engineering teams build quality products

within cost and schedule constraints
• build teams quickly and reliably
• optimize team performance throughout a project
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The Team Software Process -2
TSP incorporates best practices of software engineering in
a single integrated package, e.g.
• team project management
• product quality management
• process management
• risk management
• software metrics

With TSP, software teams
• build detailed, accurate plans
• manage and track their commitments to within +/-10%
• produce near defect-free software with typically less

than 0.1 defects/KSLOC
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Personal Software Process
To use the TSP, software developers must first be trained
in the Personal Software Process (PSP).

The PSP provides software developers with the skills and
self-convincing evidence of the benefits of software
engineering practice.

In using the PSP, software developers
• follow a defined and measured personal process
• plan every job before they do it
• gather time, size, and defect data as they work
• use these data to manage their personal work and

ensure the quality of the products they produce
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Software Quality with TSP
The quality management practices in TSP and PSP
dramatically reduce the product defect content.

The following results are drawn from
• PSP training data on 298 software developers
• TSP data from 18 projects in four organizations

The results show the effect of TSP and PSP on
• process quality
• design time
• product quality
• system test duration
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Process Quality Results
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PSP Design Time Results
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PSP Product Quality
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PSP Productivity Results
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TSP Quality Improvement -1
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TSP Quality Improvement -2

  System 
Test time

Release # 6    Release # 7    Release # 8   Release # 9
PSP/TSP-
  trained

 (Boeing Pilot #1)

2.36X more
Sloc count

32 days   41 days
28 days

4 days

94% less time
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TSP Project Results
Plan Actual

Size Estimate 110,000 LOC 89,995 LOC
Effort Estimate 16,000 hours 14,711 hours
Schedule 77 weeks 71 weeks

Product Quality (Defects/KLOC removed in phase)
• Integration  1.0    0.2
• System Test  0.1   0.4
• Field Trial  0.0   0.02

Benefits
• Quality levels improved 20 times over prior projects.
• Actual effort and schedule were within 8% of plan (early).
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Category With TSPWithout TSP

Average schedule
deviation - range

27% to 112% -8% to 5%

Average effort deviation
- range

17% to 85% -8% to -4%

Acceptance test product
quality (defects/KLOC)

0.1* to 0.7 0.02 to 0.1

* This data (.1 defects/KLOC in acceptance test) is from a CMM Level 5 organization

System test savings (cost to
system test 1000 LOC)

1 to 5 days 0.1 to 1 days

Number of post-release
defects per KLOC

0.2 to 1+ 0 to 0.1

TSP Results Summary -1
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TSP Results Summary -2
Average Schedule Deviation - Range
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TSP and Secure Systems -1
The TSP provides a framework, a set of processes, and
disciplined methods for producing quality software.

Software produced with TSP has one or two orders of
magnitude fewer defects than current practice.
• 0.02 defects/KSLOC vs. 2 defects/KSLOC
• 20 defects per MSLOC vs. 2000 defects per MSLOC

If 5% of the defects are potential security holes, with TSP
there would be 1 vulnerability per million SLOC.
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TSP and Secure Systems -2
TSP also address the need for
• professional behavior
• supportive environment
• sound software engineering practice
• operational processes
• software metrics

With tailoring, TSP could be even more effective in this
development domain.
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TSP for Secure Systems -1
TSP for Secure Systems is an applied research effort to
enhance TSP for the secure systems domain.

Using design principles for secure applications, the TSP
could be extended to incorporate
• secure design process
• secure implementation process
• secure review and inspection process
• secure test process
• security-related predictive measures
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TSP for Secure Systems -2
The goal of this effort is to develop a process that
• supports secure systems development practices
• predicts the likelihood of latent security defects
• can be dynamically tailored to respond to new threats

The TSP for secure systems project is planned for FY03
and will be a collaborative effort involving
• industry and government partners
• SEI/NSS program
• SEI/TSP initiative
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TSP Secure Systems Pilot
A key element of the TSP for Secure Systems project will
be pilot projects.

The pilot project will help in developing the specific
technical solutions.
• design and implementation practices
• review methods and checklists
• tools

We are currently seeking organizations that are interested
in participating.
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Summary
TSP helps organizations establish a mature and
disciplined software engineering practice that
• improves cost and schedule predictability
• reduces time to market
• produces high-quality, reliable software, with fewer

security-related defects

The TSP for secure systems effort will build on these
capabilities to create a mature process, with specific
features for building secure systems.
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For More Information
Visit the Software Engineering Institute web site at
www.sei.cmu.edu

Visit the TSP web site at
www.sei.cmu.edu/tsp

Contact SEI Customer Relations at 412-268-5800
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