
Sponsored by the U.S. Department of Defense
© 2002 by Carnegie Mellon University

Version 1.0 TSP for Secure Systems 2002.03.15

Carnegie Mellon
Software Engineering Institute

Pittsburgh, PA 15213-3890

Team Software Process for
Secure Systems Development

James W. Over
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890

© 2002 by Carnegie Mellon University Version 1.0 TSP for Secure Systems 2002.03.152

Carnegie Mellon
Software Engineering Institute

Trademarks and Service Marks

The following are service marks of Carnegie Mellon University.
• CMM IntegrationSM

• CMMISM

• Team Software ProcessSM

• TSPSM

• Personal Software ProcessSM

• PSPSM

The following are registered trademarks of Carnegie Mellon University.
• Capability Maturity Model®

• CMM®

© 2002 by Carnegie Mellon University Version 1.0 TSP for Secure Systems 2002.03.153

Carnegie Mellon
Software Engineering Institute

Overview

Defective software is not secure

The Team Software Process

TSP and secure systems development

© 2002 by Carnegie Mellon University Version 1.0 TSP for Secure Systems 2002.03.154

Carnegie Mellon
Software Engineering Institute

Defective Software is not Secure
Common software defects are a principal cause of
software security incidents.

• Over 90% of software security incidents are due to
attackers exploiting known software defect types.1

• Analysis of forty-five e-business applications showed
that 70% of the security defects were design defects.2

Conclusion: there is no such thing as a poor quality secure
system.

• CERT/CC
• "The Security of Applications: Not All Are Created Equal", by Andrew Jacquith.

© 2002 by Carnegie Mellon University Version 1.0 TSP for Secure Systems 2002.03.155

Carnegie Mellon
Software Engineering Institute

Security Design Defects
Examples
• Failure to authorize and authenticate users
• Failure to validate user input
• Failure to encrypt and/or protect sensitive data

Everyday software “bugs” are also a major risk.

For example, a buffer overflow can cause system failure,
or allow a hacker to take control of your system.

Many common defect types can produce a buffer overflow.
• declaration error
• logic errors in loop control or conditional expression
• failure to validate input
• interface specification error

© 2002 by Carnegie Mellon University Version 1.0 TSP for Secure Systems 2002.03.156

Carnegie Mellon
Software Engineering Institute

The Software Quality Problem
Software quality is highly variable and generally poor in
non-mission critical systems.

Widely-used operating systems and applications software
are known to have more than 2 defects per KSLOC, or
2000+ defects per million SLOC.

If only 5% of these defects are potential security concerns,
there are 100 vulnerabilities per million SLOC.

© 2002 by Carnegie Mellon University Version 1.0 TSP for Secure Systems 2002.03.157

Carnegie Mellon
Software Engineering Institute

Software Practice and Quality
Software is the only modern technology that ignores
quality until test. Typically, software engineers
• do not plan their own work
• race through requirements and design
• do the design while coding

These practices introduce volumes of defects.
• Experienced engineers inject a defect

every 7 to 10 lines of code.
• For even moderate-sized systems,

this amounts to thousands of defects.
• Most of these defects must be

found in test.
• This usually takes about half of the

development schedule.

© 2002 by Carnegie Mellon University Version 1.0 TSP for Secure Systems 2002.03.158

Carnegie Mellon
Software Engineering Institute

The Problem with Testing

Security Attack

Hardware
failure

Operator
error

Data error

Resource
contention

Configuration

Safe region = tested
(shaded)

Unsafe region = untested
(unshaded)

© 2002 by Carnegie Mellon University Version 1.0 TSP for Secure Systems 2002.03.159

Carnegie Mellon
Software Engineering Institute

Principles of Software Engineering
Current software practice violates well understood
principles of software engineering.

Examples of software engineering principles
• the need for accurate plans
• the importance of detailed, verifiable designs
• early defect removal
• effective inspections
• focus on quality throughout

Why are these principles not applied?

© 2002 by Carnegie Mellon University Version 1.0 TSP for Secure Systems 2002.03.1510

Carnegie Mellon
Software Engineering Institute

Principles Are Not Enough
Principles are easy to understand, but harder to follow.

To apply these principles in practice you also need
• a supportive infrastructure and environment
• an operational process (rules and steps) to put the

principles into practice
• a measurement system to manage and control the

result

Software engineers also need to be convinced of the
benefits of disciplined software engineering methods.

© 2002 by Carnegie Mellon University Version 1.0 TSP for Secure Systems 2002.03.1511

Carnegie Mellon
Software Engineering Institute

Design Principles for Secure Applications

The principles for producing secure applications are also
well known and easy to understand.

Examples
• Authorize and authenticate all users
• Mistrust all user input
• Encrypt sensitive data from login to logout
• Protect persistent data

© 2002 by Carnegie Mellon University Version 1.0 TSP for Secure Systems 2002.03.1512

Carnegie Mellon
Software Engineering Institute

What is the Issue?
Lack of understanding is not the issue.

A lack of data is not the issue. A vast amount of incident-
specific and system-specific data exists.

Training is not the issue. Training is available for
• writing secure applications
• network administration

Support is not the issue. There are emergency response
centers (including the CERT/CC), guidelines, checklists,
best practices, etc.

© 2002 by Carnegie Mellon University Version 1.0 TSP for Secure Systems 2002.03.1513

Carnegie Mellon
Software Engineering Institute

More Is Needed
With all the information and resources available, why is
security still an issue?

Maybe there is a need for more.
• an environment that fosters good practice
• operational processes based on engineering principles
• disciplined practitioners that adhere to these principles
• predictive measures

© 2002 by Carnegie Mellon University Version 1.0 TSP for Secure Systems 2002.03.1514

Carnegie Mellon
Software Engineering Institute

Overview

Defective software is not secure

The Team Software Process

TSP and secure systems development

© 2002 by Carnegie Mellon University Version 1.0 TSP for Secure Systems 2002.03.1515

Carnegie Mellon
Software Engineering Institute

The Team Software Process -1
The Team Software Process (TSP) is an operational
process designed to support well-established principles of
software engineering.

The principal objectives of the TSP are
• help software engineering teams build quality products

within cost and schedule constraints
• build teams quickly and reliably
• optimize team performance throughout a project

© 2002 by Carnegie Mellon University Version 1.0 TSP for Secure Systems 2002.03.1516

Carnegie Mellon
Software Engineering Institute

The Team Software Process -2
TSP incorporates best practices of software engineering in
a single integrated package, e.g.
• team project management
• product quality management
• process management
• risk management
• software metrics

With TSP, software teams
• build detailed, accurate plans
• manage and track their commitments to within +/-10%
• produce near defect-free software with typically less

than 0.1 defects/KSLOC

© 2002 by Carnegie Mellon University Version 1.0 TSP for Secure Systems 2002.03.1517

Carnegie Mellon
Software Engineering Institute

Personal Software Process
To use the TSP, software developers must first be trained
in the Personal Software Process (PSP).

The PSP provides software developers with the skills and
self-convincing evidence of the benefits of software
engineering practice.

In using the PSP, software developers
• follow a defined and measured personal process
• plan every job before they do it
• gather time, size, and defect data as they work
• use these data to manage their personal work and

ensure the quality of the products they produce

© 2002 by Carnegie Mellon University Version 1.0 TSP for Secure Systems 2002.03.1518

Carnegie Mellon
Software Engineering Institute

Software Quality with TSP
The quality management practices in TSP and PSP
dramatically reduce the product defect content.

The following results are drawn from
• PSP training data on 298 software developers
• TSP data from 18 projects in four organizations

The results show the effect of TSP and PSP on
• process quality
• design time
• product quality
• system test duration

© 2002 by Carnegie Mellon University Version 1.0 TSP for Secure Systems 2002.03.1519

Carnegie Mellon
Software Engineering Institute

Process Quality Results

11109876543210
0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

Mean Yield
PSP Level Mean

Pre-Compile Defect Yield

Program Number

© 2002 by Carnegie Mellon University Version 1.0 TSP for Secure Systems 2002.03.1520

Carnegie Mellon
Software Engineering Institute

PSP Design Time Results

11109876543210
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Design

Code

Compile

Test

Time Invested Per (New and Changed) Line of Code

Program Number

M
ea

n
M

in
ut

es
 S

pe
nt

 P
er

 L
O

C

© 2002 by Carnegie Mellon University Version 1.0 TSP for Secure Systems 2002.03.1521

Carnegie Mellon
Software Engineering Institute

PSP Product Quality

11109876543210
0

10

20

30

40

50

60

70

80

90

100

110

120

Mean Compile + Test

PSP Level Mean Comp + Test

Defects Per KLOC Removed in Compile and Test

Program Number

M
ea

n
N

u m
be

r
o f

 D
e f

ec
t s

 P
e r

K
L

O
C

© 2002 by Carnegie Mellon University Version 1.0 TSP for Secure Systems 2002.03.1522

Carnegie Mellon
Software Engineering Institute

PSP Productivity Results

11109876543210
20

22

24

26

28

30

Mean LOC/Hour
PSP Level Average

 Lines of (New and Changed) Code
Produced Per Hour of Total Development Time

Program Number

M
ea

n
 L

O
C

 /
H

ou
r

© 2002 by Carnegie Mellon University Version 1.0 TSP for Secure Systems 2002.03.1523

Carnegie Mellon
Software Engineering Institute

TSP Quality Improvement -1

 # of defects
 detected

Release # 6 Release # 7 Release # 8 Release # 9

75% lower
 defects

PSP/TSP-
 trained

 (Boeing Pilot #1)

2.36X more
Sloc count

Software Size

© 2002 by Carnegie Mellon University Version 1.0 TSP for Secure Systems 2002.03.1524

Carnegie Mellon
Software Engineering Institute

TSP Quality Improvement -2

 System
Test time

Release # 6 Release # 7 Release # 8 Release # 9
PSP/TSP-
 trained

 (Boeing Pilot #1)

2.36X more
Sloc count

32 days 41 days
28 days

4 days

94% less time

© 2002 by Carnegie Mellon University Version 1.0 TSP for Secure Systems 2002.03.1525

Carnegie Mellon
Software Engineering Institute

TSP Project Results
Plan Actual

Size Estimate 110,000 LOC 89,995 LOC
Effort Estimate 16,000 hours 14,711 hours
Schedule 77 weeks 71 weeks

Product Quality (Defects/KLOC removed in phase)
• Integration 1.0 0.2
• System Test 0.1 0.4
• Field Trial 0.0 0.02

Benefits
• Quality levels improved 20 times over prior projects.
• Actual effort and schedule were within 8% of plan (early).

© 2002 by Carnegie Mellon University Version 1.0 TSP for Secure Systems 2002.03.1526

Carnegie Mellon
Software Engineering Institute

Category With TSPWithout TSP

Average schedule
deviation - range

27% to 112% -8% to 5%

Average effort deviation
- range

17% to 85% -8% to -4%

Acceptance test product
quality (defects/KLOC)

0.1* to 0.7 0.02 to 0.1

* This data (.1 defects/KLOC in acceptance test) is from a CMM Level 5 organization

System test savings (cost to
system test 1000 LOC)

1 to 5 days 0.1 to 1 days

Number of post-release
defects per KLOC

0.2 to 1+ 0 to 0.1

TSP Results Summary -1

© 2002 by Carnegie Mellon University Version 1.0 TSP for Secure Systems 2002.03.1527

Carnegie Mellon
Software Engineering Institute

TSP Results Summary -2
Average Schedule Deviation - Range

-20%

0%

20%

40%

60%

80%

100%

120%

140%

160%

Pre TSP/PSP With TSP/PSP

Average Effort Deviation - Range

-20%

0%

20%

40%

60%

80%

100%

120%

Pre TSP/PSP With TSP/PSP

Defects/KLOC in Acceptance Test - Range

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pre TSP/PSP With TSP/PSP

Post-Release Defects/KLOC - Range

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Pre TSP/PSP With TSP/PSP

© 2002 by Carnegie Mellon University Version 1.0 TSP for Secure Systems 2002.03.1528

Carnegie Mellon
Software Engineering Institute

Overview

Defective software is not secure

The Team Software Process

TSP and secure systems development

© 2002 by Carnegie Mellon University Version 1.0 TSP for Secure Systems 2002.03.1529

Carnegie Mellon
Software Engineering Institute

TSP and Secure Systems -1
The TSP provides a framework, a set of processes, and
disciplined methods for producing quality software.

Software produced with TSP has one or two orders of
magnitude fewer defects than current practice.
• 0.02 defects/KSLOC vs. 2 defects/KSLOC
• 20 defects per MSLOC vs. 2000 defects per MSLOC

If 5% of the defects are potential security holes, with TSP
there would be 1 vulnerability per million SLOC.

© 2002 by Carnegie Mellon University Version 1.0 TSP for Secure Systems 2002.03.1530

Carnegie Mellon
Software Engineering Institute

TSP and Secure Systems -2
TSP also address the need for
• professional behavior
• supportive environment
• sound software engineering practice
• operational processes
• software metrics

With tailoring, TSP could be even more effective in this
development domain.

© 2002 by Carnegie Mellon University Version 1.0 TSP for Secure Systems 2002.03.1531

Carnegie Mellon
Software Engineering Institute

TSP for Secure Systems -1
TSP for Secure Systems is an applied research effort to
enhance TSP for the secure systems domain.

Using design principles for secure applications, the TSP
could be extended to incorporate
• secure design process
• secure implementation process
• secure review and inspection process
• secure test process
• security-related predictive measures

© 2002 by Carnegie Mellon University Version 1.0 TSP for Secure Systems 2002.03.1532

Carnegie Mellon
Software Engineering Institute

TSP for Secure Systems -2
The goal of this effort is to develop a process that
• supports secure systems development practices
• predicts the likelihood of latent security defects
• can be dynamically tailored to respond to new threats

The TSP for secure systems project is planned for FY03
and will be a collaborative effort involving
• industry and government partners
• SEI/NSS program
• SEI/TSP initiative

© 2002 by Carnegie Mellon University Version 1.0 TSP for Secure Systems 2002.03.1533

Carnegie Mellon
Software Engineering Institute

TSP Secure Systems Pilot
A key element of the TSP for Secure Systems project will
be pilot projects.

The pilot project will help in developing the specific
technical solutions.
• design and implementation practices
• review methods and checklists
• tools

We are currently seeking organizations that are interested
in participating.

© 2002 by Carnegie Mellon University Version 1.0 TSP for Secure Systems 2002.03.1534

Carnegie Mellon
Software Engineering Institute

Summary
TSP helps organizations establish a mature and
disciplined software engineering practice that
• improves cost and schedule predictability
• reduces time to market
• produces high-quality, reliable software, with fewer

security-related defects

The TSP for secure systems effort will build on these
capabilities to create a mature process, with specific
features for building secure systems.

© 2002 by Carnegie Mellon University Version 1.0 TSP for Secure Systems 2002.03.1535

Carnegie Mellon
Software Engineering Institute

For More Information
Visit the Software Engineering Institute web site at
www.sei.cmu.edu

Visit the TSP web site at
www.sei.cmu.edu/tsp

Contact SEI Customer Relations at 412-268-5800

	Team Software Process for Secure Systems Development
	Trademarks and Service Marks

	Overview
	Defective Software is not Secure
	Security Design Defects
	The Software Quality Problem
	Software Practice and Quality
	The Problem with Testing
	Principles of Software Engineering
	Principles Are Not Enough
	Design Principles for Secure Applications
	What is the Issue?
	More Is Needed

	The Team Software Process - 1
	The Team Software Process - 2
	Personal Software Process
	Software Quality with TSP
	Process Quality Results
	PSP Design Time Results
	PSP Product Quality
	PSP Productivity Results
	TSP Quality Improvement - 1
	TSP Quality Improvement - 2

	TSP Project Results
	TSP Results Summary - 1
	TSP Results Summary - 2

	TSP and Secure Systems - 1
	TSP and Secure Systems - 2
	TSP for Secure Systems - 1
	TSP for Secure Systems - 2

	TSP Secure Systems Pilot
	Summary

	For More Information

