Preserve safety by verifying only a small part of the system. Assure trust by protecting verified parts.

Preserve safety

- **Introduction**
 - Fielding new technologies is essential to preserve superiority. However, this is only possible if these technologies are validated for safety.

- **Challenges for validation**
 - Growing system complexity
 - Changing behavior at runtime (e.g., machine learning)
 - Interactions with physical world (e.g., vehicles)
 - Correct value
 - At right time (before crash)

- **Methods**
 - **Formal** automatic verification
 - Scalable
 - Unverified components
 - Monitored and enforced by verified components
 - Protected from unverified components
 - Verified from
 - Physics: verify reaction of physical model (e.g., physical vehicle)
 - Logic: correct value, with correct protection
 - Timing: At the right time
 - Verified protection

- **Results**
 - **Real-Time Mixed-Trust**
 - Computation
 - Verified protection mechanism (micro-hypervisor: UberXMHF)
 - Timing verification of combined trusted/untrusted (mixed-trust)
 - Physics verification of enforcement

Verify PHYSICS

Ensure that an unverified controller cannot violate safety bounds

Lyapunov Function

\[
V(x) = \begin{cases}
0 & \text{if } x \in \mathcal{N}_s(x_{eq}) \\
\frac{1}{2} (x - x_{eq})^T (x - x_{eq}) & \text{otherwise}
\end{cases}
\]

- Correct value
- At right time (before crash)

Verifying Timing

Response time ≤ Deadline