Measuring Performance of Big Learning Workloads

Big Learning platforms—large scale hardware and software systems designed to perform large-scale machine learning (ML) workloads on big data—are extremely complex and lack consistent and sufficient reporting of performance metrics. These difficulties can slow DoD adoption of new advances in machine learning. A key obstacle to overcome is in the collection and analysis of these metrics.

Big Learning Cluster.
The Big Learning cluster, located at the Carnegie Mellon University Parallel Data Lab, was designed to support research in evaluating existing Big Learning platforms and developing new platforms for a wide variety of large-scale ML applications. It is a distributed cluster with CPU and GPU processors, a complex storage hierarchy, a high-bandwidth/low latency network for communication, and a large persistent store.

Performance Measurement Workbench.
We developed the Performance Measurement Workbench (PMW) to collect metrics about the performance of hardware components (CPU, memory, disk, network, etc.) and the performance of the ML algorithms (accuracy, convergence, iteration times, etc.) that run on the Big Learning cluster.

Goal: Ease of Use.
PMW provides a simple, web-based portal for researchers and users to configure and submit jobs, collect and store metrics, and analyze data both during computation and in post mortem.

Goal: Reproducibility.
PMW not only collects the performance metrics for each job, but it can also collect and store the configuration of the operating system, the ML platform, and the algorithm being run. With this information reproducible experiments are achievable.

With the Performance Measurement Workbench—combining a few open-source software packages (especially Elastic Stack)—we have demonstrated how consistent and complete measurement metrics for complex Big Learning systems can be collected. PMW has the added benefit of supporting collection of configuration aimed at reproducibility of results.

The Big Learning cluster consists of 42 compute nodes each with CPU and GPU processing units, complex storage system and fast networking. It supports research in the development of parallel ML computing frameworks as well as development and testing of large-scale metrics collection systems.

![Performance Measurement Workbench system architecture. PMW provides a simple, web-based portal for submitting jobs, operating system images with collection tools preconfigured, and persistent database query and visualization services using the open-source Elastic Stack.](image-url)

PMW's dashboard display using Grafana integrates with Elastic Stack to achieve complex visualizations. This example shows system metrics for a Spark MLlib job that uses one "head" node (displayed on the left) and eight worker nodes to perform a logistic regression algorithm (displayed on the right).