
Inference of Memory Bounds�

Will Klieber | weklieber@cert.org
P16

Invalid memory accesses are one
of the most prevalent and most
serious software vulnerabilities.
This project aims to detect and
repair not only out-of-bounds
WRITEs, but also out-of-bounds
READs, which are a relatively
newer problem that can leak highly
sensitive information.

A prime example of out-of-bounds READs
is the OpenSSL HeartBleed vulnerability,
which could be used to compromised the
SSL private keys of two thirds of all websites.
This type of vulnerability is unaffected by
mitigations such as ASLR and DEP.

In general, for a re-usable buffer with stale
data, READs should be bounded to the valid
portion of the buffer. This type of problem
affects even memory-safe languages such
as Java. For example, the Jetty web server
leaked passwords and any other data
contained in a previous HTTP request.

This project is also useful for a second
problem: decompilation of binaries.
The relations between reconstructed fields
is usually is left for the human analyst to
manually investigate. We will try
to reconstruct information of the form
“[n, m] is bounds of pointer p”.

Stand-alone dynamic analysis for out-of-
bounds READS:

We have written a Java agent to:
−− Record the allocation site and the last
written position (LWP) of each allocated
ByteBuffer.
−− Check whether each write to the
ByteBuffer is consistent with definition
of qualifying array.
−− If all the writes have been qualifying, we
flag any reads beyond LWP.

• Note that this dynamic analysis is different
than the dynamic validation of statically-
inferred candidate bounds.

• With this tool, we dynamically patch Jetty to
prevent leakage of sensitive information, as
shown below.

Research Review 2017

Example: Re-used buffer with state data
Buffer contents after the first HTTP request:

Buffer contents after the second HTTP request:

Upper bound for reading:
most recently written location

“ s o r t “ : “ i d “ } h u n t e r 2 “

“ p a s s w o r d “ : “ h u n t e r 2 “

Static Analysis
Identify qualifying
arrays (for READs)

Static Analysis
Identify candidate
bounds

Dynamic Analysis
Confirm or reject
candidate bounds

Dynamic Analysis

Program
Transformation
Repair to abort if
bounds check fails

Instrument program to write to log file.
In particular, record which checks are violated, as well as
statistics on checks that succeed.

Divide the candidate bounds into 3 categories:
1. Strongly supported: Many traces where the bounds

check succeeded, with values near the bounds, and
no failed checks.

2. Likely incorrect: Some traces where the bounds
check failed.

3. Indeterminate: Insufficient log data about the check

Run the instrumented program
to collect presumed-good traces

Attacker

Request with
Malformed Header

Parse Headers
Build Error
Message

Attacker Receives
Sensitive Data:

Attacker
Receives No
Response from
the Server

Error Message with
Sensitive Data

Unpatched Jetty

Jetty with runtime bounds enforcement

Attacker

Request with
Malformed
Header Parse

Headers Build Error
Message

Check
Memory
Read

Jetty
Webserver

Http
Parser

Error
Handler

Java
Agent

Invalid Read
Detected
Perform

Response
(e.g. abort)

AAAttaaaccckkeeerr

Introduced at runtime:
java -javaagent:agent.jar jetty.jar

Attacker
Jetty

Webserver
Http

Parser
Error

Handler

Strategies to propose candidate bounds:

1. (For reads) The most recently written
position in the buffer.

2. Bounds of region allocated by malloc.
3. Pointer arithmetic with constant offset

(e.g., field of a struct)—mainly for use
in decompilation.

4. Analysis of memory accesses within loops
and limits of the loop.

−− Exact if the number of iterations is
known at start of loop.
−− Only a candidate bound if it is possible
to break out of the loop early.

5. Invariants for structs (by typename or by
allocation site).

−− Suppose that we discover that, in most
of the program, one field of a struct
supplies the bounds of another field
of the struct.
−− Then we guess that this is an invariant
and violations of it are errors.

6. If in most callsites of a function foo(int n,
char *p, ...), the bounds on p is the closed
interval [p, p+n-1], then propose that
in the other callsites, the same bounds
should apply.

How do we determine which arrays should
be subject to the analysis for READs outside
the valide portion of an arrary?
• We consider an array to be a qualifying

array if every write to the array
is at either index 0 or at the successor of
the last written position.

How do we identify the valid portion of the
array?
• Heuristic: It is from the start of the array up

to and including the last written element of
the array.

How often do qualifying arrays occur in real-
world programs?
• Imprecision in static analysis might cause

false negatives.
• To establish ground truth, we do a separate

dynamic analysis (next column).

Copyright 2017 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government
position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED
ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY
DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice
for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal use is granted, provided the
copyright and “No Warranty” statements are included with all reproductions and derivative works.
External use:* This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form
without requesting formal permission. Permission is required for any other external and/or commercial use. Requests for permission should be
directed to the Software Engineering Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM17-0739
Inference of Memory Bounds

	Blank Page

