Security Engineering Risk Analysis (SERA)

“We wouldn’t have to spend so much time, money, and effort on network security if we didn’t have such bad software security.”

Importance of Good Design

940 Total CWEs

<table>
<thead>
<tr>
<th>Percentage</th>
<th>CWE Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>40%</td>
<td>Design Weakness</td>
</tr>
<tr>
<td>24%</td>
<td>Other Weakness</td>
</tr>
<tr>
<td>78%</td>
<td>Design Weakness</td>
</tr>
</tbody>
</table>

MITRE’s Common Weakness Enumeration (CWE)

Source: http://www.cwe.mitre.org/ as of Feb 9, 2014

Software Faults: Introduction, Discovery, and Cost

Faults account for 30–50% percent of total software project costs.

- Most faults are introduced before coding (~70%).
- Most faults are discovered at system integration or later (~80%).

Goal: Reduce Security Design Risk

Security design weaknesses

- Are not addressed by security controls or static analysis tools and
- Cannot be easily addressed during operations (e.g., by patching systems)

Errors during requirements engineering are costly!

- Defects cost up to 200 times more once fielded than if caught in requirements engineering
- Reworking defects consumes >50% of project effort
- >50% of defects are introduced in requirements engineering

Applying SERA during requirements specification

- Provides early detection of design weaknesses for remediation
- Reduces residual security risk during operations

Security Engineering Risk Analysis

1. Establish operational context.
2. Identify risk.
3. Analyze risk.
4. Develop control plan.

Software Engineering Institute | Carnegie Mellon University.