
© 2012 Carnegie Mellon University

Software Security Engineering
Lecture 1

Nancy R. Mead, SEI
nrm@sei.cmu.edu

2 © 2012 Carnegie Mellon University

Outline
About this course
Software assurance challenges
Foundations for software assurance
Software assurance guiding principles

3 © 2012 Carnegie Mellon University

Course topics

•Security models and methods in the areas of:
•lifecycle process models
•risk management
•requirements engineering
•architecture and design
•coding and testing
•governance and management

•If time permits, acquisition of newly developed and
COTS software will also be discussed.

4 © 2012 Carnegie Mellon University

Prerequisites

•Undergraduate software engineering course
•Undergraduate information security course
•Equivalent background

•Note: The course will tend to assume that students
have software engineering background, such as
knowledge of common lifecycle models

5 © 2012 Carnegie Mellon University

Educational Activities
•Class will be lecture and discussion, with guest lectures on
some topics
•Readings from textbook, papers, reports
•Homework assignments
•Project including selected software development activities:

•Lifecycle security management plan
•Selection of process model (Agile, Spiral, etc.) and rationale
•Security risk analysis
•Development of misuse cases/attack trees
•Security requirements elicitation
•Architectural Trade-off analysis/QAW
•Design of security features (e.g. Access control mechanisms)
•Inspection

6 © 2012 Carnegie Mellon University

Text and other sources
•Allen, Julia H., Barnum, Sean, Ellison, Robert J., McGraw,
Gary, & Mead, Nancy R. Software Security Engineering: A
Guide for Project Managers. Addison Wesley Professional,
2008. (Available from Addison-Wesley and Amazon.com)

•U.S. Department of Homeland Security. Build Security In
Website

•Additional papers, SEI reports, CERT podcasts, webinars,
etc. as needed

7 © 2012 Carnegie Mellon University

Grading Criteria
•50% individual assignments
•50% team project

•Grading will take into consideration completeness, creativity,
deep insights, thinking outside the box. Sources must be
cited. Material lifted from another source must be in quotes.

•Assignments are to be turned in or posted to Blackboard
BEFORE class on the day they are due. Assignments not
turned in on time will lose 10% for each day late.

© 2012 Carnegie Mellon University

Software Assurance
Challenges

8

9 © 2012 Carnegie Mellon University

Scenario – Drone Virus Attack

[Present a (visual) scenario showing the application of the research
idea to the problem that exists, i.e., it should summarize the
challenges in a concrete, DoD-relevant context & show how the
research result will be exploited.]

10 © 2012 Carnegie Mellon University

Drone Scenario – Key Challenges

[Present a (visual) scenario showing the application of the research
idea to the problem that exists, i.e., it should summarize the
challenges in a concrete, DoD-relevant context & show how the
research result will be exploited.]

A: Code scanning does
not address early
lifecycle problems

B: Detection occurs late.
Recovery is expensive.

C: Protection like firewalls won’t stop
malware that comes from other trusted
systems.

D : We need to measure the effectiveness
of early lifecycle techniques to get them
into practice in DoD.

D

D

11 © 2012 Carnegie Mellon University

Is There Really a COTS Security Problem?

Wasted time
Wasted money
Still no tool!

12 © 2012 Carnegie Mellon University

Current Challenge for Software
Assurance

Development Life Cycle

Patch & Pray

47,202 known vulnerabilities as of 9/17/11

13 © 2012 Carnegie Mellon University

Operational Mission Reality – Systems
of Systems

Development 1

Development 2

Development 3

Operational Mission

Assure &
Verify
Mission
Security

© 2012 Carnegie Mellon University

Foundations for
Software Assurance

14

15 © 2012 Carnegie Mellon University

Information/IT Security Point of View

• Typically dealing with an organization’s
infrastructure provider, their management chain,
& the CIO

• End objective is to provide a functional,
available, secure operational infrastructure &
applications for all users

• Information protection & privacy are demanding
increasing attention (regulatory, marketplace
pressure)

• Software/application security may or may not be
on the radar screen

16 © 2012 Carnegie Mellon University

Software Security Point of View

• Dealing primarily with software/application
developers & their management chain

• in-house, service provider, purchased software
• End objective is to produce working systems &

applications, on schedule, on budget
• Security typically addressed (if at all):

• During coding and testing
• During operations/production as an “after the fact”

add-on; reactive
• For COTS, open source, or third party software, as a

provider/vendor responsibility

COTS: Commercial Off The Shelf

17 © 2012 Carnegie Mellon University

Why Software Security? - 1

• Developed nations’ economies and defense depend, in
large part, on the reliable execution of software

• Software is ubiquitous, affecting all aspects of our
personal and professional lives.

• Software vulnerabilities are equally ubiquitous,
jeopardizing:

• Personal identities
• Intellectual property
• Consumer trust
• Business services, operations, & continuity
• Critical infrastructures & government

18 © 2012 Carnegie Mellon University

Why Software Security? - 2

• Most successful attacks result from:
• Targeting and exploiting known, non-patched

software vulnerabilities
• Insecure software configurations

• Many of these are introduced during software
design & development

• Increasing trend of assembling systems from
purchased parts means getting software
acquisition* right with respect to security

• Refer to Polydys & Wisseman. “Software Assurance in Acquisition: Mitigating Risks to the Enterprise.”
2007. https://buildsecurityin.us-cert.gov/daisy/bsi/resources/dhs/908.html?branch=1&language=1

19 © 2012 Carnegie Mellon University

So What Is Software Security?

• Not the same as security software
• Firewalls, intrusion detection, encryption
• Protecting the environment within which the software

operates
• Engineering software so that it continues to

function under attack
• The ability of software to recognize, resist, tolerate,

and recover from events that threaten it

• The goal: Better, defect-free software that can
function more robustly in its operational production
environment

20 © 2012 Carnegie Mellon University

Security Perspectives

https://www.securecoding.cert.org/confluence/display/seccode/Top+10+Secure+Coding+Practices

21 © 2012 Carnegie Mellon University

Software Needs to be Trusted

• Exploitation of software defects is estimated to cost
the U.S. economy $60 Billion annually

• Software development and sustainment activities
must follow proper practices, but there is no
authoritative point of reference

• In 2005, U.S. Dept of Homeland Security (DHS)
created a group to define a common body of
knowledge (CBK) for secure software assurance

22 © 2012 Carnegie Mellon University

Definition: Software Assurance

• Software assurance (Software Assurance Curriculum Project)

 Application of technologies and processes to achieve a required
level of confidence that software systems and services
function in the intended manner, are free from accidental or
intentional vulnerabilities, provide security capabilities
appropriate to the threat environment, and recover from
intrusions and failures.

23 © 2012 Carnegie Mellon University

Goal of the CBK

• Serve as a basis for
• “defining workforce needs and competencies,

leveraging sound practices, and guiding curriculum
development for education and training relevant to
software assurance”

• Reference: Redwine, S., Software Assurance: A Guide to the Common Body of Knowledge to
Produce, Acquire and Sustain Secure Software V1.1, https://buildsecurityin.us-cert.gov/bsi/dhs/927-
BSI.html

https://buildsecurityin.us-cert.gov/bsi/dhs/927-BSI.html
https://buildsecurityin.us-cert.gov/bsi/dhs/927-BSI.html

24 © 2012 Carnegie Mellon University

Strengths of the CBK

• Provides help for the U.S. government to ensure
that it is getting secure software

• Provides 300 pages of recommendations for what
practices are needed

25 © 2012 Carnegie Mellon University

Limitations of the CBK

• Missing:
 Information about why the practices are required
 Guidance as to how the practices should be applied

to a range of situations

26 © 2012 Carnegie Mellon University

Addressing the Gaps

• DHS enlisted the SEI CERT program to coordinate the
development of a curriculum for a Master of Software
Assurance (MSwA) degree program (what and how)

— Built on the CBK and other sources to develop a
curriculum body of knowledge and associated outcomes

— Identified the need for a coherent set of guiding principles
for secure software assurance

• SEI CERT and the Software Engineering Program at
Oxford University, UK collaborated to build a set of
principles (why)

27 © 2012 Carnegie Mellon University

Security Principles

• Saltzer and Schroeder* defined security as “techniques
that control who may use or modify the computer or the
information contained in it”

• Described the three main categories of concern:
 Confidentiality
 Integrity
 Availability

* Reference: Saltzer and Schroeder, “The Protection of Information in Computer
Systems.” Communications of the ACM, 1974.

28 © 2012 Carnegie Mellon University

Technology Environment in 1974

• S360 in use from 1964-1978
• S370 came on the market in 1972
• COBOL & BAL programming languages
• MVS operating system released in March 1974
• Patches were carefully tested to minimize operational

disruption

29 © 2012 Carnegie Mellon University

Changes since 1974

• Internet
• Morris worm – November 2, 1988
• 50,000+ software vulnerabilities and exposures (CVE)
• Java, C++, C#
• Mobile computing
• Cloud
• Etc.

© 2012 Carnegie Mellon University

Software Assurance
Guiding Principles

30

31 © 2012 Carnegie Mellon University

Principles of Software Assurance

• A set of principles to guide learners in understanding the
WHY of software assurance

32 © 2012 Carnegie Mellon University

Principle 1: Risk
• Perception of risk drives assurance decisions

• Assurance implementation choices (policies, practices,
tools, restrictions) are based on the perception of threat
and the impact should that threat be realized

• Perceptions are built based on successful attacks – the
current state of assurance is largely reactive – more
successful organizations react and recover faster, learn
from the reactive responses or others, and are more
vigilant in anticipating and detecting attacks

• Misperceptions are failure to recognize threats and
impacts – “how could it happen to us?”

• Risk decisions must be shared among all stakeholders
and technology participants to ensure a consistent and
effective implementation

33 © 2012 Carnegie Mellon University

Principle 2: Interactions

• Highly connected systems (e.g. Internet) require
alignment of risk across all stakeholders otherwise
critical threats will be unaddressed (missed,
ignored) at different points in the interactions
• There are costs to addressing assurance which must be

balanced against the impact of the risk
• Risk must also be balanced with other opportunities

(performance, reliability, usability, etc.)
• Interactions occur at many technology levels (network,

security appliances, architecture, applications, data
storage, etc.) and are supported by a wide range of roles
– effective assurance requires consist risk recognition
and response at all levels

34 © 2012 Carnegie Mellon University

Principle 3: Trusted Dependencies
• Your assurance depends on other people’s assurance

decisions and the level of trust you place on these
dependencies (system of system problem based on
interactions)
• Each dependency represents a risk
• Dependency decisions should be based on a realistic

assessment of the threats, impacts, and opportunities
represented by an interaction

• Dependencies are not static and trust relationships
should be reviewed to identify changes that warrant
reconsideration

• Using many standardized pieces to build technology
applications and infrastructure increases the
dependency on other’s assurance decisions

35 © 2012 Carnegie Mellon University

Principle 4: Attacker

• There exists a broad community of attackers with
growing technology capabilities able to
compromise the confidentiality, integrity, and
availability of any and all of your technology assets
- there are no perfect protections and the attacker
profile is constantly changing.
• The attacker uses technology, processes, standards,

and practices to craft a compromise (socio-technical
responses).

• Attacks are crafted to take advantage of the ways we
normally use technology or designed to contrive
exceptional situations where defenses are circumvented

36 © 2012 Carnegie Mellon University

Principle 5: Coordination and Education

• Assurance requires effective coordination among
all technology participants and their governing
bodies
• Protection must be applied broadly across the people,

processes, and technology because the attacker will take
advantage of all possible entry points

• Authority and responsibility must be clearly established
at an appropriate level in the organization to ensure
effective participation

37 © 2012 Carnegie Mellon University

Principle 6: Well Planned and Dynamic
• An adaptive response is required for assurance (justified

confidence that software functions as intended) because
the threat is always changing. Assurance implementation
must represent a balance among governance, construction,
and operation and is highly sensitive to changes in each of
these areas
• Engineering challenge: Assurance cannot be added

later; you must build to the level of acceptable assurance
that you need

• No one has resources to redesign systems every time
the threat changes

• Assurance cannot be readily adjusted upward after the
fact

38 © 2012 Carnegie Mellon University

Principle 7: Measurable

• A means to measure and audit overall assurance
must be built in. If you can’t measure it you can’t
manage it
• All elements of the socio-technical environment must tie

together (practices, processes, procedures, etc.)
— Measuring individual elements may be useful but not sufficient evidence for

overall assurance
— Each participant will address only the assurance for which they are held

accountable

• Effective measurement is well supported by sound
engineering and organizational principles - well formed
and consistently applied processes are critical to ensure
an appropriate measurable response

39 © 2012 Carnegie Mellon University

Questions?

40 © 2012 Carnegie Mellon University

Looking Ahead: Lecture #2
I. Software assurance practices
II. Software assurance lifecycle models
III. Software assurance maturity models

41 © 2012 Carnegie Mellon University

Reading Assignment
• Software Security Engineering book – Chapters 1 & 2:

http://www.amazon.com/Software-Security-Engineering-Project-
Managers/dp/032150917X

• Saltzer & Schroeder paper:

http://web.mit.edu/Saltzer/www/publications/protection/

• HICSS Principles paper:
http://csdl.computer.org/dl/proceedings/hicss/2012/4525/00/4525f368.p
df

• Drone attack articles:

• http://www.informationweek.com/government/security/air-force-says-drone-virus-is-no-
threat/231900741?queryText=Air%20Force%20Says%20Drone%20Virus%20Is%20No%2
0Threat

• http://csdl.computer.org/dl/mags/co/2011/11/mco2011110015.pdf

http://www.amazon.com/Software-Security-Engineering-Project-Managers/dp/032150917X
http://www.amazon.com/Software-Security-Engineering-Project-Managers/dp/032150917X
http://web.mit.edu/Saltzer/www/publications/protection/
http://web.mit.edu/Saltzer/www/publications/protection/
http://csdl.computer.org/dl/proceedings/hicss/2012/4525/00/4525f368.pdf
http://csdl.computer.org/dl/proceedings/hicss/2012/4525/00/4525f368.pdf
http://csdl.computer.org/dl/proceedings/hicss/2012/4525/00/4525f368.pdf
http://www.informationweek.com/government/security/air-force-says-drone-virus-is-no-threat/231900741?queryText=Air%20Force%20Says%20Drone%20Virus%20Is%20No%20Threat
http://www.informationweek.com/government/security/air-force-says-drone-virus-is-no-threat/231900741?queryText=Air%20Force%20Says%20Drone%20Virus%20Is%20No%20Threat
http://www.informationweek.com/government/security/air-force-says-drone-virus-is-no-threat/231900741?queryText=Air%20Force%20Says%20Drone%20Virus%20Is%20No%20Threat
http://www.informationweek.com/government/security/air-force-says-drone-virus-is-no-threat/231900741?queryText=Air%20Force%20Says%20Drone%20Virus%20Is%20No%20Threat
http://www.informationweek.com/government/security/air-force-says-drone-virus-is-no-threat/231900741?queryText=Air%20Force%20Says%20Drone%20Virus%20Is%20No%20Threat
http://www.informationweek.com/government/security/air-force-says-drone-virus-is-no-threat/231900741?queryText=Air%20Force%20Says%20Drone%20Virus%20Is%20No%20Threat
http://www.informationweek.com/government/security/air-force-says-drone-virus-is-no-threat/231900741?queryText=Air%20Force%20Says%20Drone%20Virus%20Is%20No%20Threat
http://www.informationweek.com/government/security/air-force-says-drone-virus-is-no-threat/231900741?queryText=Air%20Force%20Says%20Drone%20Virus%20Is%20No%20Threat
http://www.informationweek.com/government/security/air-force-says-drone-virus-is-no-threat/231900741?queryText=Air%20Force%20Says%20Drone%20Virus%20Is%20No%20Threat
http://www.informationweek.com/government/security/air-force-says-drone-virus-is-no-threat/231900741?queryText=Air%20Force%20Says%20Drone%20Virus%20Is%20No%20Threat
http://www.informationweek.com/government/security/air-force-says-drone-virus-is-no-threat/231900741?queryText=Air%20Force%20Says%20Drone%20Virus%20Is%20No%20Threat
http://www.informationweek.com/government/security/air-force-says-drone-virus-is-no-threat/231900741?queryText=Air%20Force%20Says%20Drone%20Virus%20Is%20No%20Threat
http://www.informationweek.com/government/security/air-force-says-drone-virus-is-no-threat/231900741?queryText=Air%20Force%20Says%20Drone%20Virus%20Is%20No%20Threat
http://www.informationweek.com/government/security/air-force-says-drone-virus-is-no-threat/231900741?queryText=Air%20Force%20Says%20Drone%20Virus%20Is%20No%20Threat
http://www.informationweek.com/government/security/air-force-says-drone-virus-is-no-threat/231900741?queryText=Air%20Force%20Says%20Drone%20Virus%20Is%20No%20Threat
http://www.informationweek.com/government/security/air-force-says-drone-virus-is-no-threat/231900741?queryText=Air%20Force%20Says%20Drone%20Virus%20Is%20No%20Threat
http://www.informationweek.com/government/security/air-force-says-drone-virus-is-no-threat/231900741?queryText=Air%20Force%20Says%20Drone%20Virus%20Is%20No%20Threat
http://csdl.computer.org/dl/mags/co/2011/11/mco2011110015.pdf
http://csdl.computer.org/dl/mags/co/2011/11/mco2011110015.pdf

42 © 2012 Carnegie Mellon University

Homework Assignment # 1
1. (80%) Surf the web and find 4 different actual examples of successful

intrusion
• one that resulted from human error, such as giving out a password

or downloading a virus
• one that resulted from a system configuration error
• one that resulted from software provided an intrusion opportunity

because of a flawed development process
• one that resulted from a vulnerability in a COTS product

Describe how each of these attacks could have been avoided. Consider
changes in policy, configuration management, software development
practice, and COTS acquisition practices.

2. (20%) Compare and contrast the HICSS Principles paper with the
Saltzer and Schroeder Principles paper.

Turn this in BEFORE the next class

43 © 2012 Carnegie Mellon University

NO WARRANTY

THIS MATERIAL OF CARNEGIE MELLON UNIVERSITY AND ITS SOFTWARE ENGINEERING
INSTITUTE IS FURNISHED ON AN “AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING,
BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,
EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM
FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this presentation is not intended in any way to infringe on the rights of the
trademark holder.

This Presentation may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests
for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003
with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded
research and development center. The Government of the United States has a royalty-free government-
purpose license to use, duplicate, or disclose the work, in whole or in part and in any manner, and to have
or permit others to do so, for government purposes pursuant to the copyright license under the clause at
252.227-7013.

mailto:permission@sei.cmu.edu

	Software Security Engineering�Lecture 1
	Outline
	Course topics
	Prerequisites
	Educational Activities
	Text and other sources
	Grading Criteria
	Software Assurance Challenges�
	Scenario – Drone Virus Attack
	Drone Scenario – Key Challenges
	Is There Really a COTS Security Problem?
	Current Challenge for Software Assurance
	Operational Mission Reality – Systems of Systems
	Foundations for Software Assurance
	Information/IT Security Point of View
	Software Security Point of View
	Why Software Security? - 1
	Why Software Security? - 2
	So What Is Software Security?
	Security Perspectives
	Software Needs to be Trusted
	Definition: Software Assurance
	Goal of the CBK
	Strengths of the CBK
	Limitations of the CBK
	Addressing the Gaps
	Security Principles
	Technology Environment in 1974
	Changes since 1974
	Software Assurance Guiding Principles
	Principles of Software Assurance
	Principle 1: Risk
	Principle 2: Interactions
	Principle 3: Trusted Dependencies
	Principle 4: Attacker
	Principle 5: Coordination and Education
	Principle 6: Well Planned and Dynamic
	Principle 7: Measurable
	Slide Number 39
	Looking Ahead: Lecture #2
	Reading Assignment
	Homework Assignment # 1
	Slide Number 43

