
 Presenter: David Root
 (Material developed with Tony Lattanze)

Managing Software Development ©David Root, 2010, all rights reserved 1

Managing Software

Development

Software Development
Lifecycles

©David Root, 2010, all rights reserved 2 Managing Software Development

Session Objectives

!!Software development lifecycles

"!Defined

"!Difference from “process”

"!Compare to development variables

"!Common Lifecycles

So…

Why should we care about

this subject?

(E.D. Hirsch Cultural Literacy?)

©David Root, 2010, all rights reserved 3 Managing Software Development

©David Root, 2010, all rights reserved 4 Managing Software Development

What is a Life Cycle?

!! Websters (1892):

!! “The series of stages in form and functional
activity through which an organism passes

between successive recurrences of a specified
primary stage.”

!! Reifer (1997): (product)

!! “Period of time that begins when a software
product is conceived and ends when the product

is retired from use.”

©David Root, 2010, all rights reserved 5 Managing Software Development

What is a Life Cycle?
Tony Lattanze

!!The software lifecycle is the cradle to
grave existence of a software product or
software intensive system

"!includes initial development, repairs, and
enhancement, and decommission

!!Management of the entire lifecycle of a
software intensive system requires a
deeper knowledge than basic in-the-small
development intuition and experience

©David Root, 2010, all rights reserved 6 Managing Software Development

More on What…
!! Lifecycle models attempt to generalize the

software development process into steps
with associated activities and/or artifacts.

"!They model how a project is planned,
controlled, and monitored from inception to
completion.

!! Lifecycle models provide a starting point
for defining what we will do.

!!But, what is the end point of a project?

©David Root, 2010, all rights reserved 7 Managing Software Development

So…What is a Process?

 (remember this for the process lectures)

!!A process is a sequence of steps performed
for a given purpose.

Websters:

“a series of actions or operations conducing
to an end.”

The concept of software process is rarely
presented in undergraduate education.

©David Root, 2010, all rights reserved 8 Managing Software Development

Process = Lifecycle

!! Software process is not the same as life cycle

models.

"!process refers to the specific steps used in a specific

organization to build systems

"! indicates the specific activities that must be

undertaken and artifacts that must be produced

"!process definitions include more detail than provided

lifecycle models

!! Software processes are sometimes defined in

the context of a lifecycle model.

So, what is important?

!!What you call “it” isn’t.

!!What stakeholders

understand is.

©David Root, 2010, all rights reserved 9 Managing Software Development

©David Root, 2010, all rights reserved 10 Managing Software Development

Life Cycles

!!Ad Hoc

!!Classic (waterfall)

!!Prototype

!!RAD

!!Incremental

!!Spiral

!!WinWin

!!V model

!!Chaos

Concurrent COTS 4th Gen

Be very careful here
!! Is this just semantics?

!!Are there standard definitions?

!!How should approach this with a new

project?

!!Remember, we tend to think linearly,

sequentially. Is this a problem?

Define, communicate, define, communicate..

©David Root, 2010, all rights reserved 11 Managing Software Development

©Copyright David Root, 2010, all rights
reserved 12

 Managing Software
Development

Remember this when looking at SDLC’s

Scope

Quality Budget

Time

Expectation

Space

Technology

People Process

Solution

Space

f(x)

f(x) = f(Planning, Process, People, Product, ?…..)

Customer’s view Developer’s view

©David Root, 2010, all rights reserved 13 Managing Software Development

Also need to look at with respect

to:

!!Stakeholders
"!Backgrounds, domain expertise

"!Commitment to project

!!Environments

"!Business / market

"!Cultures

!!Moral, legal constraints

©David Root, 2010, all rights reserved 14 Managing Software Development

So, when looking at projects

Need to ask:

What SDLC would define my

project best?

(The project drives the lifecycle, not the

other way around)

!!What criteria are important for the project?

Project criteria….

©David Root, 2010, all rights reserved 15 Managing Software Development

©David Root, 2010, all rights reserved 16 Managing Software Development

Ad Hoc

“Hobbyist”
!! Legacy

!! Code – Test – Code – Test………
"!Becomes a mess, chuck it, start over

!! Design (high level) – Code – Test – Code –
Test…..
"! (Reality was Code - Test – Code – Test – Document

the resulting design)

!! Lack of defined, formalized processes

Is this the same as “no process?”

©David Root, 2010, all rights reserved 17 Managing Software Development

Waterfall Model

!!First proposed in 1970 by W.W. Royce

!!Development flows steadily through:

"!requirements analysis, design

implementation, testing, integration, and

maintenance.

!!Royce advocated iterations of waterfalls

adapting the results of the precedent

waterfall.

©David Root, 2010, all rights reserved 18 Managing Software Development

Waterfall Model

!!Technology had some influence on the

viability of the waterfall model.

"!slow code, compile, and debug cycles

!!Reflected the way that other engineering

disciplines build things.

!!Formed the basis of the earliest software

process frameworks

!!Waterfall is still used today (but no one will

admit it). Has a bad reputation. Why?

©David Root, 2010, all rights reserved 19 Managing Software Development

Waterfall (linear) (Classic)

Model Intent

Product Idea!

Analysis!

Design!

Implementation!

Testing!
Product Life!

©David Root, 2010, all rights reserved 20 Managing Software Development

Waterfall

Problems
!! Increasing use of resources?

!! Oops
"!Go back to a previous step

"!Progressively more costly

!! Downside
"!Cost
"!Time

"!Cascading Bugs

!! Where appropriate?

©David Root, 2010, all rights reserved Managing Software Development

From Chris Kemerer……

Reality of Waterfall

1. Enthusiasm

2. Disillusionment

3. Panic & Hysteria

4. Search for the Guilty

5. Punishment of the Innocent

6. Praise & Honors for the non-participants

21

©David Root, 2010, all rights reserved 22 Managing Software Development

Prototypes
!! Throw Away (Rapid)

"!Proof of concept – It can be done

"!End point unknown!

!! Evolutionary

"!Keep something

"!Different than incremental?

"!The evolutionary development model can be

distinguished from the prototyping model in that
!! a final product is typically specified

!! the product features are evolved overtime to some

predetermined final state

©David Root, 2010, all rights reserved 23 Managing Software Development

The Rapid Prototype Model

Product Idea!

Analysis!

Design!

Implementation!

Testing!
Product Life!

Prototype!

©David Root, 2010, all rights reserved 24 Managing Software Development

A Common Misuse of the

Rapid Prototype Model

Product Idea!

More Code!

Test! Product Life!

Prototype!

What are the problems with the

prototype lifecycle?

When would you use it:

Weaknesses:

©David Root, 2010, all rights reserved 25 Managing Software Development

©David Root, 2010, all rights reserved 26 Managing Software Development

Incremental Model

(One of the most misused definitions)

!!The incremental model prescribes

developing and delivering the product in

planned increments.
"!The product is designed to be delivered in

increments.

"!Each increments provides (in theory) more

functionality than the previous increment.

!!Reality: Projects called incremental really

do increments in Waterfall phases…..

However, it is used:

!!Almost all developments…or at least the

term

!!Anything done in pieces

"!Agile – are these planned in advance

"!No knowing the next step till you do an

increment.

!!Be very careful to define what you “mean”

as incremental

©David Root, 2010, all rights reserved 27 Managing Software Development

©David Root, 2010, all rights reserved 28 Managing Software Development

Design Code Test Analysis

Design Code Test Analysis

Design Code Test Analysis

Incremental Model

(what “blocks” are missing?)

These are sequences of what?

©David Root, 2010, all rights reserved 29 Managing Software Development

Rapid Application Development

(RAD)
!! Incremental

!! 60-90 days per release

!! Information Systems

!! 4th Generation Techniques

Data

Modeling

Process

Modeling

Application

Generation
Testing &

Turnover

Business

Modeling

©David Root, 2010, all rights reserved 30 Managing Software Development

Spiral Model

!!The spiral model

"!First defined by Barry Boehm

"!combines elements of:

!! evolutionary, incremental, and prototyping models

"!First model to explain

!! why iteration matters

!! How iteration could be used effectively

"!the term spiral refers to successive iterations

outward from a central starting point.

©David Root, 2010, all rights reserved 31 Managing Software Development

Spiral Model

Concept development projects

New product development projects

Product enhancement projects

Product maintenance projects

Construction & release

Engineering

Risk analysis

Planning

Customer
communication

Project entry
point axis

Customer
evaluation

Roger S. Pressman’s “Software
Engineering, a Practitioners Approach”

Note

©David Root, 2010, all rights reserved 32 Managing Software Development

Spiral Model
!!The goal is to

"! identify risk

"! focus on it early.

!! In theory, risk is reduced in outer spirals a

the product becomes more refined.

!!Each spiral

"!starts with design goals

"!ends with the client reviewing the progress

thus far and future direction

"!was originally prescribed to last up to 2 years

©David Root, 2010, all rights reserved 33 Managing Software Development

WINWIN Spiral

1. Identify

next-level

stakeholders

2. Identify stakeholders’

win conditions 3a. Reconcile win conditions

3b. Establish next-level objectives,

constraints and alternatives

4. Evaluate process and

product alternatives and

resolve risks

5. Define next level of

product and process,

including partitions

6. Validate product and

process definitions

7. Review and comment

Roger S. Pressman’s Software Engineering, a Practitioners Approach

©David Root, 2010, all rights reserved 34 Managing Software Development

V Model

!!Often used in system engineering

environments to represent the system

development lifecycle.

"!summarizes the main steps taken to build

systems not specifically software

"!describes appropriate deliverables

corresponding with each step in the model.

©David Root, 2010, all rights reserved 35 Managing Software Development

V Model…
!!The left side of the V represents the specification stream

where the system specifications are defined.

!!The right side of the V represents the testing stream where

the systems is being tested against the specifications

defined on the left side.

!!The bottom of the V where the tails meet, represents the

development stream.

©David Root, 2010, all rights reserved 36 Managing Software Development

Chaos Model

!!Extends the spiral and waterfall model

defined by L.B.S. Raccoon.

"!espouses the notion that the lifecycle must

address all levels of a project, from the larger

system to the individual lines of code

"!The whole project, system, modules, functions

and each line of code must by defined,

implemented, and integrated holistically.

©David Root, 2010, all rights reserved 37 Managing Software Development

Chaos Model…
!!Chaos Theory underlies the fundamental

concepts of the Chaos Model including:

"!Software projects are non-linear systems

exhibiting random motion (linear systems are

rare in nature)

"!Non-linear systems can be more than the sum

of their parts.

!! To characterize the behavior of a non-linear system

one needs principles to study the system as a whole

and not just its parts in isolation (i.e. it is senseless
to study architecture design in isolation).

©David Root, 2010, all rights reserved 38 Managing Software Development

Chaos Model

!!Chaos strategy resembles the way that

programmers work toward the end of a

project:
"!when they have a list of bugs to fix and features

to create

"!usually someone prioritizes the remaining tasks

"!programmers fix them one at a time

!!Chaos strategy states that this is the only

valid way to do the work.

©David Root, 2010, all rights reserved 39 Managing Software Development

Chaos Model
!!Key points of chaos strategy include

"!Issues are incomplete programming tasks.

"!Resolving an issue means to bring it to stability.

!! Resolve the most important issues first.

!! The most important issues will be a combination of

big, urgent, and robust, where

"!Big issues provide value to users as working functionality.

"!Urgent issues are time sensitive and would otherwise hold

up other work if not completed sooner rather than later.

"!Robust issues are trusted and tested.

"!Work and schedules are derived from big,

urgent, and robust issues.

 Presenter: David Root
 (Material developed with Tony Lattanze)

Managing Software Development ©David Root, 2010, all rights reserved 40

Others…

©David Root, 2010, all rights reserved 41 Managing Software Development

Components
!!COTS

!!Cycle
"!Identify Possible ones

"!Check Library

"!Use (if they exist)

"!Build new ones (if they don’t

"!Put new ones in Library

!!Problems with COTS?

SEI process models for COTS

!!PECA
"!Plan the evaluation – stakeholders, goals, constraints,

timeframe

"!Establish criteria – measurable, not abstract

"!Collect data based on criteria

"!Analyze – careful of first fit compared to best fit

!!Cure

"!COTS Usage Risk Evaluation

©David Root, 2010, all rights reserved 42 Managing Software Development

©David Root, 2010, all rights reserved 43 Managing Software Development

Concurrent

!!Complementary applications

"!High Interdependence with Modules

!!State Charts

!!Triggers for transition

!!Examples

"!Client – Server

"!OBUS

©David Root, 2010, all rights reserved 44 Managing Software Development

Concurrent

Development
Model

Analysis activity

Represents a state of a
software engineered activity

Under
development

None

Awaiting
changes

Under
revision

Under
review

Baselined

Done

Roger S. Pressman’s Software Engineering, a Practioners Approach

©David Root, 2010, all rights reserved 45 Managing Software Development

Are these different?

!!Different names for traditional?

!!Does it matter?

!!What do you as project managers need to

take away from this?

©David Root, 2010, all rights reserved 46 Managing Software Development

Current State of the Art

!! Iterative, cyclic development (or so stated)

!! Agile Processes?

!! Software is grown rather than birthed whole

!! Short cycles

!! Small teams

!! Component development

!! More integration vice new development?

©David Root, 2010, all rights reserved 47 Managing Software Development

When looking at a new project

DO NOT make your project fit a
SDLC!!!

!! INSTEAD, find the right SDLC and tailor it to
your project (if it can be).

!! Your organization may drive this
"!But any lifecycle, process should be seen as a tool to

assist development, not an end in and of it self.

©David Root, 2010, all rights reserved 48 Managing Software Development

Summary

!!Need to define & understand SDLC’s

!!Variables / criteria that impact

selection

"!Resources, time, scope & quality

!!Advantages/disadvantages of each

 Presenter: David Root
 (Material developed with Tony Lattanze)

Managing Software Development ©David Root, 2010, all rights reserved 49

Questions

