
A Reference Architecture for Big Data Systems in the
National Security Domain

John Klein
Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA, USA

jklein@sei.cmu.edu

Ross Buglak, David Blockow, Troy Wuttke,
Brenton Cooper

Data to Decisions Cooperative Research Centre
Kent Town, SA, Australia

{ross.buglak, david.blockow, troy.wuttke,
brenton.cooper}@d2dcrc.com.au

ABSTRACT
Acquirers, system builders, and other stakeholders of big data
systems need to define requirements, develop and evaluate
solutions, and integrate systems together. A reference architecture
enables these software engineering activities by standardizing
nomenclature, defining key solution elements and their
relationships, collecting relevant solution patterns, and classifying
existing technologies. Within the national security domain,
existing reference architectures for big data systems have not been
useful because they are too general or are not vendor-neutral. We
present a reference architecture for big data systems that is
focused on addressing typical national defence requirements and
that is vendor-neutral, and we demonstrate how to use this
reference architecture to define solutions in one mission area.

CCS Concepts
• Information systems~Data analytics • Information
systems~Online analytical processing • Information
systems~Information retrieval • Information systems~Data
management systems • Information systems~Spatial-temporal
systems • Software and its engineering~Software
infrastructure • Software and its engineering~Distributed
systems organizing principles

Keywords
Reference architecture; big data

1. INTRODUCTION
The national security application domain includes software
systems used by government organisations such as police at the
local, state, and federal level; military; and intelligence. Big data
systems are pervasive in this domain, with applications ranging
from:

• Predictive maintenance of aircraft, ships, and vehicles,
combining measured data collected on the platform with
meteorological data, equipment supplier data, and other
sources to optimise maintenance schedules (e.g., [1]).

• Geospatial analytics that identify movement and changes of

features on the ground, to support tactical, operational and
strategic intelligence analysis and planning.

• Network graph analysis to help police identify associates and
organisational affiliations.

Stakeholders who specify, evaluate, and acquire these big data
systems often lack software engineering technical expertise in this
emerging and dynamic technology space [2]. While these
stakeholders may have competence in other types of software
systems, the principles and practices for big data systems are
different, and general software knowledge may not be sufficient to
ensure success [3].

A reference architecture (RA) serves as a mechanism to represent
and transfer software engineering knowledge that bridges from the
problem domain to a family of solutions. A RA defines domain
concepts and relevant qualities, decomposes the solution and
creates a lexicon to enable efficient communication, and provides
guidance and principles for system stakeholders [4].

There are a number of published RAs for big data systems.
However, these were not useful for our clients in the national
security domain, because they were too general (e.g., [5], [6], or
[7]) or because the solutions were specific to a particular vendor’s
technology (e.g., [8]). We discuss these in more detail in the
Related Work section below.

The contribution of this paper is a big data RA for applications in
the national security domain, which includes:

• Motivating use cases;
• Architecture decomposition based on grouping of related

concerns into architectural modules;
• Mapping of current technologies onto the concerns;
• Demonstration of how to use the RA to create big data

system architectures.

Each of these topics is discussed in a subsequent section of the
paper.

2. RELATED WORK
RAs are a powerful software engineering knowledge transition
tool, capturing both domain and solution knowledge for a
portfolio of related systems [9]. In their survey of the state of the
practice, Cloutier, et al. note that RAs facilitate multi-site, multi-
organisation, and multi-vendor systems, which are all primary
considerations in our application domain.

There are a number of existing big data RAs. The US National
Institute of Standards and Technology (NIST) shepherded a
community of researchers and practitioners to create a 7-volume
Big Data Interoperability Framework, which includes a Reference

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
BIGDSE'16, May 16 2016, Austin, TX, USA
© 2016 ACM. ISBN 978-1-4503-4152-3/16/05…$15.00
DOI: http://dx.doi.org/10.1145/2896825.2896834

2016 2nd International Workshop on BIG Data Software Engineering

 51

2016 2nd International Workshop on BIG Data Software Engineering

 51

Architecture volume [10]. The NIST framework reflects the
contributions of more than 35 authors, and included public review
and comments, producing an architecture that is broad in coverage
and applicability, but uneven in depth and detail. The RA
presented below bears some superficial similarities to the NIST
framework, but is distinguished by several key differences:

• While both architectures are decomposed into elements with
similar names, the decomposition rationale and principles are
never articulated in the NIST architecture and so an architect
cannot easily allocate functions and qualities to elements of
that architecture. Our architecture is organised using explicit
principles, discussed below, allowing architects to easily
allocate new functions and qualities.

• Our RA draws a clear system boundary, with data producers
and consumers outside of the scope of the system. The NIST
architecture includes data producers and consumers inside
the RA, which leaves the scope effectively unbounded.

• The NIST RA is domain-agnostic. As such, it does not
satisfy the first key principle of that Cloutier, et al. identify
for a reference, architecture, namely that of elaborating
mission, vision, and strategy [9]. The NIST RA represents a
“Meta RA”, which must be further refined for an application
domain. Our RA could be viewed as one such refinement.

The strengths of the NIST RA include strict vendor neutrality, a
stand-alone volume providing clear definitions of big data
terminology, and a comprehensive inventory of use cases across
many domains (although the relationship of the RA to those use
cases is not part of the baseline release).

Technology vendors such as IBM [6], Oracle [7], and Microsoft
[8] have produced big data RAs. Like the NIST RA, these RAs
are not domain-specific, and while there are some domain-specific
refinements presented, none of those refinements reflects the
national security application domain.

By structuring the problem and solution domains, RAs
complement other architecture knowledge sharing approaches.
For example, knowledge bases can provide more detailed
guidance for architects in specific areas of a RA, such as
QuABaseBD that focuses on the Storage module concerns and
technologies in this RA [9].

3. DOMAIN REQUIREMENTS AND USE
CASES
The domain-specific requirements for this RA were discovered by
analysing use cases in four mission capability areas. The mission
capability areas were selected to cover a broad set of functions,
deployment topologies, and data processing capabilities.

The mission segments and uses cases analysed were:

1. Strategic Geospatial Analysis and Visualisation – here we
assessed map production from satellite imagery, which
includes displaying the image with overlays showing known
features, such as roads and buildings, and identifying and
annotating new and changed features (i.e. adding metadata).
This mission segment also included a use case that searched
map data/metadata and rendered the results.

2. Full-motion video analysis – this capability is used in
missions ranging from search-and-rescue to surveillance
from fixed or mobile cameras. The use cases here were to
acquire, render, and store a digital video stream, and to detect
and track objects of interest.

3. Open Source Intelligence – This mission capability is used
for decision support. Use cases include collecting and storing
open source data, such as web sites, social media (including
text, audio, and video), identifying entities (people,
organisations) and relationships to populate a knowledge
graph, querying the knowledge graph, and using the
knowledge graph to summarise information about entities.

4. Signals Intelligence Analysis – use cases in this mission area
were to capture and store electronic transmissions, and to
execute analytics to match new captures to archived
transmissions.

These use cases were analysed to identify requirements categories
and general requirements relevant to big data, in areas such as
data types (e.g., unstructured text, geospatial, audio), data
transformations (e.g., clustering, correlation), queries (e.g., graph
traversal, geospatial), visualisations (e.g., image and overlay,
network), and deployment topologies (e.g., sensor-local
processing, private cloud, and mobile clients).

4. REFERENCE ARCHITECTURE
4.1 Organisation of the Reference
Architecture
The RA metamodel is shown in Figure 1. The architecture is a
collection of modules, which decompose the solution into
elements that realise functions or capabilities, and that address a
cohesive set of concerns. Concerns are addressed by solution
patterns, or by strategies, which are design approaches that are
less prescriptive than solution patterns. Together, modules and
concerns define a solution domain lexicon, and the discussion of
each concern relates problem space terminology (origin of the
concern) to the solution terminology (patterns and strategies).

Figure 1 – Reference Architecture Concepts

The concerns are multi-faceted. Some concerns capture external
constraints on the system (e.g., type of workload), design
decisions (e.g., optimisations), or system quality attributes (e.g.,
latency and ease of programming). This type of concern has a
significant impact on the design, analysis, or evaluation of a
module.

A second type of concern was related to reuse or sharing of
modules. These concerns included differences in execution
triggers/rates (e.g., driven by input data streams, user requests, or
fixed period) and whether the functions or capabilities provided
by a module were typically shared within or external to the big
data system.

Other concerns align with stakeholder communities of interest or
stakeholders roles, such as processing algorithms or system
management. This type of concern helps stakeholders orient their
perspective on the RA by identifying the modules each
stakeholder needs to focus on.

5252

The last type of concern represents de facto partitioning of the
commercial and open source packages and frameworks used to
realise big data solutions. Reflecting this partitioning in the
module decomposition simplifies the mapping between off-the-
shelf technology and the RA and helps stakeholders position
vendors and products within the RA.

This RA is intended to supplement other sources of general
architecture knowledge: The scope of the concerns identified in
the RA was limited to issues that arise from the volume, variety,
and velocity of data in big data systems, and the solution patterns
and strategies are focused on addressing these concerns in the big
data context of high scale and heterogeneity. For example,
usability is obviously a concern in any human-computer interface,
and so this was not specifically identified as a concern in the RA.
However, in a big data system, providing an indication of data
confidence (e.g., from a statistical estimate, provenance metadata,
or heuristics) in the user interface impacts usability, and this was
identified as a concern for the Visualisation module. The concern-
driven decomposition discussed below reflects this scoping.

4.2 Module Decomposition
Figure 2 shows the system boundary and module decomposition
of the RA. The RA assumes a system of systems context [10],
where Data Providers and Data Consumers are external systems
that are not under the same design or operational authority as the
big data system. These systems may be instances of big data
systems developed using this RA (or another architecture).

The 13 modules are grouped into three categories: The Big Data
Application Provider includes application-level business logic,
data transformations and analysis, and functionality to be
executed by the system. The Big Data Framework Provider
includes the software middleware, storage, and computing
platforms and networks used by the Big Data Application
Provider. As shown in the figure, the system may include multiple
instances of the Big Data Application Provider, all sharing the
same instance of the Big Data Framework Provider.

The third module category is Cross-Cutting Modules. Each of the
three Cross-Cutting modules addresses a set of concerns that
impact nearly every module in the other two categories.

The following subsections discuss the modules in each of the
three categories.

4.2.1 Big Data Application Provider Modules

4.2.1.1 Application Orchestration Module
Application Orchestration configures and combines other modules
of the big data Application Provider, integrating activities into a
cohesive application. An application is the end-to-end data
processing through the system to satisfy one or more use cases.

Orchestration may be performed by humans, software, or some
combination of the two, and may be fixed at system design time
or configurable via a Graphical User Interface (GUI) or Domain
Specific Language (DSL).

4.2.1.2 Collection Module
The Collection module is primarily concerned with the interface
to external Data Providers. The Collection module is concerned
with matching the characteristics and constraints of the providers
and avoiding data loss.

4.2.1.3 Preparation Module
The main concern of the Preparation module is transforming data
to make it useful for the other downstream modules, in particular
Analytics. Preparation performs the transformation portion of the
traditional Extract, Transform Load (ETL) cycle, including tasks
such as:

• Data validation (e.g. checksum validation);
• Cleansing (e.g. removing or correcting bad records);
• Optimisation (e.g. de-duplication);
• Schema transformation and standardization;
• Indexing to support fast lookup.

The Preparation module may perform basic enrichment, which
adds information from other sources to a data record. The
enrichment process begins in Preparation and continues in
Analytics. The enrichment preformed in Preparation is usually
very simple processing, such as creating record counts for
particular types or categories, or performing a lookup to add
location name based on latitude and longitude values. Later, the
Analytics module may perform more sophisticated enrichment,
for example, using a recommendation engine to create new
associations to other records.

4.2.1.4 Analytics Module
The Analytics module is concerned with efficiently extracting
knowledge from the data, typically often working with multiple
data sets with different data characteristics. Analytics can
contribute further to the transform stage of the ETL cycle by
performing more advanced transformations and enrichments to
support knowledge extraction.

4.2.1.5 Visualisation Module
The Visualisation module is concerned with presenting processed
data and the outputs of analytics to a human Data Consumer, in a
format that communicates meaning and knowledge. It provides a
"human interface" to the big data. Data Consumers are external to
the big data system.

Some visualisation techniques may involve producing a static
document, cached for later access (e.g. a text report or graphic),
however other techniques often include on-demand generation of
an interactive interface (e.g. navigating and filtering search
results, or traversing a social graph). Display of data confidence
and/or data provenance information is common for machine-
generated data, and the interactive visualisations may include the
ability to create, confirm, or correct (i.e. update) data.

4.2.1.6 Access Module
The Access module is concerned with the interactions with
external actors, such as the Data Consumer, or with human users,
via Visualisation. Unlike Visualisation, which addresses "human
interfaces", the Access module is concerned with "machine
interfaces" (e.g. APIs or web services). The Access module is the
intermediary between the external world and the big data system
to enforce security or provide load balancing capability.

Similar to the Collection module, the primary concern of the
Access module is matching the characteristics of the external
systems. The format and style of the interfaces to systems will
vary, and data may be pulled or pushed by the Access module.

5353

4.2.2 Big Data Framework Provider Modules

4.2.2.1 Processing Module
The Processing module is concerned with efficient, scalable, and
reliable execution of analytics. It provides the necessary
infrastructure to support execution distributed across 10s to 1000s
of nodes, defining how the computation and processing is
performed.

A common solution pattern to achieve scalability and efficiency is
to distribute the processing logic and execute it locally on the
same nodes where data is stored, transferring only the results of
processing over the network. The large number of processing
nodes and the long execution duration of some analytic processes
lead to concerns about process or node failure during execution.
Another critical concern of the Processing module is the ability to
recover and not lose data in the event of a process or node failure
within the framework.

4.2.2.2 Messaging Module
The Messaging module is concerned with reliable queuing,
transmission, and delivery of data and control functions between
components. While messaging is common in traditional IT
systems, its use in big data systems creates additional challenges.

Big data solutions are often comprised of many different products
and frameworks, making integration a primary concern. The
Messaging module must support a variety of clients, programming
languages, and enterprise integration patterns.

The volume and throughput of messages in big data solutions is a
particular concern, and can necessitate distributed messaging
frameworks. Volume also leads to concerns if durability (i.e.
permanently storing all transferred messages) is needed.

4.2.2.3 Data Storage Module
The primary concerns of the Data Storage module are providing
reliable and efficient access to the persistent data. This includes
the logical data organisation, data distribution and access
methods, and data discovery (using e.g. metadata services,
registries and indexes).

The data organisation and access methods are concerned with the
data storage format (e.g. flat files, relational data,
structured/unstructured data) and the type of access required by
the big data Application Provider (e.g. file-type API, SQL, graph
query). It is common for the Data Storage module to provide more
than one representation of a single data record (a type of de-
normalisation) to support efficient analytic execution for different
use cases.

When data is distributed across a cluster, the Data Storage module
will be concerned with the availability and consistency of the
data, and the tolerance of partitions (network or node faults)
within the cluster.

4.2.2.4 Infrastructure Module
The Infrastructure module provides the infrastructure resources
necessary to host and execute the activities of the other BDRA
modules. This includes:

• Networking: resources that transfer data from one
infrastructure framework component to another;

• Computing: physical processors and memory that execute
software;

• Storage: resources which provide persistence of the data;
• Environmental: physical resources (e.g. power, cooling) that

must be accounted for when establishing an instance of a big
data system.

Figure 2 – Module Decomposition of the Reference Architecture

5454

Infrastructure and data centre design are concerns when
architecting a big data solution, and can be an important factor in
achieving desired performance. Big data infrastructure needs to be
scalable, reliable and support target workloads.

4.2.3 Cross-Cutting Modules

4.2.3.1 Security Module
Security concerns affect all modules of the RA. The Security
module is concerned with controlling access to data and
applications, including enforcement of access rules and restricting
access based on classification or need-to-know.

Security is also concerned with intrusion detection and
prevention. Big data systems can include introspective analytics
that look at internal data and access patterns to perform intrusion
detection.

Big data can present an attractive target to attackers, and in
general, security and privacy have not been primary concerns in
the development of many big data technologies (e.g., see the
security survey in http://www.quabase.sei.cmu.edu). Consistent
application of controls requires a holistic approach to security and
privacy as data traverses multiple components of the architecture.

4.2.3.2 Management Module
Concerns for the cross-cutting Management module are grouped
into two broad categories:

• System Management, including activities such as monitoring,
configuration, provisioning and control of infrastructure and
applications;

• Data Management, involving activities surrounding the data
lifecycle of collection, preparation, analytics, visualisation
and access.

4.2.3.3 Federation Module
The Federation module is concerned with interoperation between
federated instances of the RA. These concerns are similar to
typical system of systems (SoS) federation concerns [10],
however existing SoS federation strategies may not support the
scale of big data systems.

4.2.3.4 Common Concerns
This “module” collects a set of concerns that did not map cleanly
into any of the other modules, and which are not related to each
other in any meaningful way, but should be considered in the
architecture of a big data system. These other concerns are:

• Scalability - the ability to increase or decrease the processing
and storage provided, in response to changes in demand. In a
perfectly scalable system, the cost of the provided resources
is linearly related to the demand (usually up to some resource
limit). In systems that are less scalable, the cost of the
provided resources increases faster than the demand, or the
resource limit may be unacceptably low. In big data systems,
scalability is often dynamic or “elastic”, and the architecture
enables the system to adjust at runtime to changes in
workload. Scalability needs to be considered at all layers of a
big data architecture, from the data centre infrastructure
through to the application layer.

• Availability - the ability for a system to remain operational
during fault conditions such as network outages or hardware
failures. Similar to scalability, a holistic approach needs to be
take to designing for availability, as a single component can

prevent a system from providing the required level of
availability.

• Data organisation is a common concern, particularly for high
data volume use cases, as the way that data is stored can
significantly impact performance downstream in the
processing pipeline. Data organisation design decisions can't
be deferred, but must be made early, so that each stage in the
processing pipeline stores data so the next stage can access it
efficiently.

• Technology stack decisions, both hardware and software, are
driven by several interwoven considerations. In addition to
features, concerns include standardization within the system,
maturity, ease of operation, vendor support, cost, and staff
skills.

• Accreditation, which is a domain-specific concern and
involves assessing the cybersecurity qualities of the system.
Software accreditation can be challenging for big data
solutions due to the prevalence of open source products in
solution architectures.

5. MAPPING CURRENT TECHNOLOGY
Big data system architectures and implementations rely on
composition of existing open source and commercial software
technologies [3]. In the national security application domain, in
particular, acquirers evaluating and analysing proposed solutions
need an understanding of which off-the-shelf technologies are
appropriate (or not appropriate) to satisfy a function or quality
within the RA. Furthermore, most users of this RA already have
big data systems within their enterprise, and a technology
mapping provides an easy first step to view those systems through
the RA lens.

To satisfy these stakeholder needs, our RA provides a mapping of
commercial and open source products to modules. This is a simple
tabular mapping, where rows are products and columns are
modules in the RA. An “x” at an intersection indicates that the
particular product is an appropriate technology to use in the
module. Products were identified based on stakeholder’s current
big data systems, and from proposals for new systems. There were
35 products mapped to Big Data Application Provider modules,
and 64 products mapped to Big Data Framework Provider
modules.

This mapping is maintained in a separate volume of the RA, as it
is the most dynamic content, and is the least normative and
prescriptive content.

6. USING THE RA TO DEFINE SYSTEM
ARCHITECTURES
Our RA concludes with a volume that contains tutorial
information showing stakeholders how to use the architecture to
create concrete solution designs, including examples of
identifying relevant concerns, making design decisions, and
selecting appropriate strategies and design patterns.

Although the RA modules are presented “input to output” and
“top to bottom”, as described above in Section 4, the tutorial
recommends that stakeholders consider the modules in a different
order at design time, which reflects a user-centric requirements
perspective and also reflects the main design decision
dependencies among the modules. The recommended design time
order is shown in Figure 3. The recommended design process
produces an initial system architecture, which would typically be
refined as the system is prototyped and developed.

5555

1. Visualisation - What information do the users need?
2. Collection – What are the data sources and how to collect the data?
3. Analytics - What information needs extracting from the data?
4. Preparation - What transformations are needed prior to the analytics?
5. Data Storage - How will the data be stored to support analytics,

visualisations and access?
6. Processing - How will analytics execute?
7. Application Orchestration - Does the processing pipeline need

orchestration?
8. Access - What API access is required? How will the data be retrieved?
9. Messaging - Is supporting messaging infrastructure required?
10. Management - How will the application and infrastructure be managed?
11. Security - What security controls are required?
12. Federation - Does the solution need to operate within a federation?
13. Infrastructure - What infrastructure is needed?

Figure 3 – Design time ordering of RA modules
The rest of this section describes how the RA is used to design a
simple open-source intelligence (OSINT) system, that takes data
from Twitter feeds (Tweets) and detects events (e.g., protests,
riots, etc.), and then correlates detected events with data from
news media websites. This description is highly abbreviated,
touching on some of the important module refinements and
skipping over many of the less interesting concerns.

We begin with Visualisation concerns, and decide that the primary
visualisation will display detected events on a map display, and
allow filtering to a specified time range. This need for geospatial
display and processing leads to an initial architecture iteration
shown in Figure 4.

Figure 4 - OSINT Architecture – Step 1

Next, we consider the Collection concerns. The Twitter data and
web page data is semi-structured, and consists of text and images.
Based on the Twitter API limits, and a need to retain 3 years of
live data, we decide that HBase is a good candidate for storing
collected data. The result of these decisions is the second step of
the architecture, shown in Figure 5.

Figure 5 - OSINT Architecture – Step 2

We next consider Analytics concerns. The approach to detecting
events from Twitter feeds is to detect anomalies in vocabulary
(new words, phrases, tags, etc.), cluster those anomalies, and
finally categorise the target events and discard non-interesting
events (such as related to a major weather event or celebrity

appearance). This machine learning-based pipeline is instantiated
as Step 3 of the architecture, shown in Figure 6.

Figure 6 - OSINT Architecture – Twitter Event Detection

Concerns related to Preparation are primarily data cleansing and
normalisation, e.g., Tweet geo-tags are converted to Region IDs,
emoticons are converted to text, and duplicate news pages will be
removed. Tweets will be processed through a stream pipeline, and
new pages through a batch pipeline.

We next turn to Data Storage concerns. The primary Tweet access
by analytics is by region ID and time range, so we decide to shard
by region ID. We see that we can simplify some of the analytic
processing and training by denormalising our data, creating an
hourly summary for each region that includes counts of Tweets,
unique users, new users, flags for the intervals that contain
anomalies, and labelling data for training the anomaly detector.
Similar reasoning is applied to define the storage structures for the
news page data.

Processing concerns depend on the Analytics to be performed. In
this case, we choose Hadoop for batch processing, and Spark
Streaming for stream processing for both Preparation and
Analytics.

Our Application Orchestration identifies continuously, hourly,
daily, monthly, as shown in Figure 7. We decide to use Apache
Oozie as the workflow manager, because it fits well with the
processing ecosystem that we have chosen earlier.

Access concerns show that a thin browser client is appropriate to
overlay events onto maps. A separate map server and event server
are instantiated, with the event server hiding the complexity of the
SQL queries to the PostGIS database.

Management concerns included logging, metrics collection, and
health monitoring. Also, a data backup and retention strategy was
chosen, and a system provisioning framework was chosen. These
are shown in Figure 8.

5656

Figure 7 - OSINT Architecture - Workflows

Figure 8 - OSINT Architecture - Management

Infrastructure concerns led to a combination of scale-up and scale-
out approaches. A significant concern was that the volume of the
data sets drives cost to the point where we must share a single
deployed system between the test and production teams. This is
accomplished using a multi-tenant strategy, with separate logical
namespaces on the Hadoop cluster and separate tables in the
PostGIS database server.

7. CONCLUSIONS AND FUTURE WORK
We have described a reference architecture for big data systems in
the national security application domain, including the principles
used to organise the architecture decomposition. This RA serves
as a knowledge capture and transfer mechanism, containing both
domain knowledge (such as use cases) and solution knowledge
(such as mapping to concrete technologies). We have also shown
how the RA can be used to define architectures for big data
systems in our domain.

Future work includes:

• Using the module decomposition in the RA to make
decisions on where to standardize interfaces and
implementations within a particular enterprise;

• Creating new narrow and deep knowledge bases, similar to
QuABaseBD (www.quabase.sei.cmu.edu) for other modules
within the RA;

• Evaluating the utility of the RA to define software product
lines for sub-domains within the scope of the RA;

• Creating instantiations of the RA for specific use cases
within the intelligence domain.

8. ACKNOWLEDGMENTS
Copyright 2016 ACM. This material is based upon work

funded and supported by the Data to Decisions CRC (D2D CRC),
the Australian government’s Cooperative Research Centres
Programme, and by the United States Department of Defense
under Contract No. FA8721-05-C-0003 with Carnegie Mellon
University for the operation of the Software Engineering Institute,
a federally funded research and development center. References
herein to any specific commercial product, process, or service by
trade name, trade mark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation,
or favoring by Carnegie Mellon University or its Software
Engineering Institute. [Distribution Statement A] This material
has been approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and
distribution. DM-0003215.

9. REFERENCES
[1] Lockheed Martin, “Autonomic Logistics Information System

(ALIS).” Lockheed Martin, Inc., Brochure, CS00086-55,
2009.

[2] Infochimps, “CIOs and big data: What your team wants you
to know.”, http://www.infochimps.com/resources/report-
cios-big-data-what-your-it-team-wants-you-to-know-6/
(Accessed 18 Jan 2016).

[3] I. Gorton and J. Klein, “Distribution, Data, Deployment:
Software Architecture Convergence in Big Data Systems,”
IEEE Software, vol. 32, no. 3, pp. 78-85, May/June 2015.
doi: 10.1109/MS.2014.51.

[4] R. Cloutier, G. Muller, D. Verma, et al., “The Concept of
Reference Architectures,” Systems Engineering, vol. 13, no.
1, pp. 14-27, 2010, doi: 10.1002/sys.20129.

[5] NIST Big Data Public Working Group Reference
Architecture Subgroup, “NIST Big Data Interoperability
Framework: Volume 6: Reference Architecture.” National
Institute of Standards and Technology, Special Publication,
1500-6, 2015.

[6] D. Mysore, S. Khupat, and S. Jain, “Big data architecture and
patterns.” IBM, White Paper, 2013,
http://www.ibm.com/developerworks/library/bd-
archpatterns1/ (Accessed 1 Jan 2016).

[7] Oracle, “Information Management and Big Data.” White
Paper, 2014,
http://www.oracle.com/technetwork/database/bigdata-
appliance/overview/bigdatarefarchitecture-2297765.pdf

[8] Microsoft, “Microsoft Big Data Solution Brief.”,
http://download.microsoft.com/download/F/A/1/FA126D6D-
841B-4565-BB26-D2ADD4A28F24/
Microsoft_Big_Data_Solution_Brief.pdf

[9] J. Klein and I. Gorton, “Design Assistant for NoSQL
Technology Selection,” in Proc. 1st Int. Workshop on the
Future of Software Architecture Design Assistants
(FoSADA'15), Montreal, Canada, 2015. doi:
10.1145/2751491.2751494.

[10] M. W. Maier, “Architecting principles for systems-of-
systems,” Systems Engineering, vol. 1, no. 4, pp. 267-284,
1998, doi: 10.1002/(SICI)1520-6858(1998)1:4<267::AID-
SYS3>3.0.CO;2-D.

5757

