
© 2015 Carnegie Mellon University

Software Solutions Conference 2015
November 16–18, 2015

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Building Secure Software
for Mission Critical
Systems
Mark Sherman, PhD
Technical Director, CERT

2
Building Secure Software for Mission Critical Systems
November 18, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Copyright 2015 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-C-0003
with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and
development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE
MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[Distribution Statement A] This material has been approved for public release and unlimited distribution. Please see Copyright
notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without
requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the
Software Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon® and CERT® are registered marks of Carnegie Mellon University.

DM-0003031

3
Building Secure Software for Mission Critical Systems
November 18, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

• State of software

• Building software: the Secure
Software Development Lifecycle

• Requirements
• Development
• Operations

• Review

Agenda

4
Building Secure Software for Mission Critical Systems
November 18, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

“Software is eating the world”

Source: http://www.wsj.com/articles/SB10001424053111903480904576512250915629460

Marc Andreessen

Wall Street Journal

Aug 20, 2011

Software is the new Hardware

5
Building Secure Software for Mission Critical Systems
November 18, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Software is the new hardware – IT
IT moving from specialized
hardware to software, virtualized
as

• Servers: virtual CPUs

• Storage: SANs

• Switches: Soft switches

• Networks: Software defined
networks

6
Building Secure Software for Mission Critical Systems
November 18, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

• Cellular
• Main processor

• Base band processor (SDR)

• Secure element (SIM)

• Automotive
• Autonomous vehicles

• Vehicle to infrastructure (V2I)

• Vehicle to vehicle (V2V)

• Industrial and home automation
• 3D printing (additive manufacturing)

• Autonomous robots

• Interconnected SCADA

• Aviation
• Next Gen air traffic control

• Smart grid
• Smart electric meters

• Smart metering infrastructure

• Embedded medical devices

Software is the new hardware – cyber physical

7
Building Secure Software for Mission Critical Systems
November 18, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Complex software is business and mission
critical

8%

80%

0%

20%

40%

60%

80%

100%

1960 2000

% Airplane Function in
Software

1,000

9,000,000

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1960 2000

Avionics SLOC

Evolution of avionics size and function from F-4A (1960) to F-35 (2000)

Sources: Final Report, NASA Study on Flight Software Complexity

March 2009; Mel Conway, “Tower of Babel and the Fighter Plane,” Oct 9, 2013

8
Building Secure Software for Mission Critical Systems
November 18, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Vehicle technology following the same path

2010 Jeep Cherokee

(12 ECUs)

2014 Jeep Cherokee

(32 ECUs)

Sources: Miller and Valasek, A Survey of Remote Automotive Attack Surfaces, http://illmatics.com/remote%20attack%20surfaces.pdf;

https://www.cst.com/webinar14‐10‐23~?utm_source=rfg&utm_medium=web&utm_content=mobile&utm_campaign=2014series

https://en.wikipedia.org/wiki/Electronic_control_unit

Common assertion that modern high end vehicles have
• Over 50 antennas
• Over 80 ECUs
• Over 100M lines of code

9
Building Secure Software for Mission Critical Systems
November 18, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Software vulnerabilities are ubiquitous

MSS7

Slide 9

MSS7 New slide before 14 -- what's the external view why we need to get better and fast
Mark S. Sherman, 7/13/2015

10
Building Secure Software for Mission Critical Systems
November 18, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Cyber attacks on physical systems
Steelworks compromise causes massive damage to furnace.
One of the most concerning was a targeted APT attack on a German steelworks which ended in the attackers
gaining access to the business systems and through them to the production network (including SCADA). The
effect was that the attackers gained control of a steel furnace and this caused massive damages to the plant.

Dragonfly attacks a dozen companies
The Dragonfly hacker group attacked a number of companies’ SCADA systems and installed the malware
‘Havex’. This was used to gather information about the systems. No damage was done, because the
compromise was detected and removed before the hackers had completed the observation and intelligence
gathering phase.

Sources: https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Lageberichte/Lagebericht2014.pdf?__blob=publicationFile;

http://www.resilienceoutcomes.com/state-ict-security/

11
Building Secure Software for Mission Critical Systems
November 18, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Software and security failures are expensive

Source: New York Times, Jan 10, 2014

Average cost in a breach:

US$188 per record
Source: Ponemon Institute, “2013 Cost of Data

Breach Study: Global Analysis”, May 2013

Source: Wall Street Journal, Feb 26, 2014

12
Building Secure Software for Mission Critical Systems
November 18, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

An ounce of prevention ….

“We wouldn't have to
spend so much time,
money, and effort on
network security if we
didn't have such bad
software security.”

Bruce Schneier in Viega and
McGraw, “Building Secure
Software,” 2001

Source: Washington Post, March 19, 2014, http://www.washingtonpost.com/business/economy/toyota-reaches-12-billion-settlement-to-end-criminal-
probe/2014/03/19/5738a3c4-af69-11e3-9627-c65021d6d572_story.html; http://www.greene-broillet.com/Articles/Toyotasuddenacceleration.shtml

13
Building Secure Software for Mission Critical Systems
November 18, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Catching software faults early saves money
Faults accounts for 30‒50% percent of total software project
costs

Sources: Critical Code; NIST, NASA, INCOSE, and Aircraft Industry Studies

14
Building Secure Software for Mission Critical Systems
November 18, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Security is a lifecycle issue

15
Building Secure Software for Mission Critical Systems
November 18, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Room for improvement

Mission thread
(Business process)

19% fail to carry out
security requirement

definition

27% do not practice
secure design

72% do not use code or
binary analysis

47% do not perform
acceptance tests for third-

party code

More than 81% do not coordinate their security practices
in various stages of the development life cycle.

Sources: Forrester Consulting, “State of Application Security,” January 2011; Wendy Nather, Research Director, 451 Research, “Dynamic testing:
Why Tools Alone Aren't Enough, March 25, 2015”

16
Building Secure Software for Mission Critical Systems
November 18, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

There is a wide range of application security
quality

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11

D
ia

gn
os

tic
s

pe
r K

SL
O

C

Program

Source: CERT sample of evaluated programs

C - P Device

17
Building Secure Software for Mission Critical Systems
November 18, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Requirements

18
Building Secure Software for Mission Critical Systems
November 18, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Threat analysis tools help derive abuse and
misuse cases

Microsoft SDL Threat Modeling Tool

Jane Cleland-Huang’s Persona non Grata
http://www.infoq.com/articles/personae-non-

gratae

Microsoft STRIDE Threat Types

Denning, Friedman, Kohno
The Security Cards: Security Threat Brainstorming Toolkit

19
Building Secure Software for Mission Critical Systems
November 18, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Embedded systems represent new classes of
vulnerabilities

Size, weight, power and latency
concerns
Unique architectures of embedded
controllers
Bit and clock cycle level operations
Physical resources with real time
sensors
Safety-Critical Real-time OS
Intermittent communications
Multiple command-and-control
masters
Embedded firmware,
Unique internal busses & controllers
Developers are engineers, not
software developers

Embedded systems have different characteristics than IT systems

20
Building Secure Software for Mission Critical Systems
November 18, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Security approaches for IT systems do not cover
embedded system security

Virus definitions and operating
guidelines do not always apply
Firewalls and IDS/IPS of limited value
Centralized account control not
possible
Network tools and assessment
techniques unaware of embedded
systems architecture and interfaces
Larger number of attack surfaces
More diverse attack surfaces
Maintenance backdoors
Hardcoded credentials
Unique and insecure protocols
Unplanned connectivity and upgrades

Responses to attack surfaces and threat models not generally reusable

21
Building Secure Software for Mission Critical Systems
November 18, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Programming for security is not the same as
programming for safety
Safety strategy Security view

Rely on physical models in fault trees Attackers do not obey the laws of
physics

Redundancy mitigates single failures Attackers are not independent events

Shared, global state improves
behavior

Attackers use leaked information
beyond intended purposes

Shared service containers to meet
space, power and weight constraints

Coupled services enable denial of
service attacks

Microcontrollers and air gaps
implement boundaries

Side channels open vulnerabilities

22
Building Secure Software for Mission Critical Systems
November 18, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Risk analysis is focused on a single system
• Standalone (i.e., single system) models have

been developed
• Risk analysis considers the exploit of an

individual vulnerability within a single system
Security risk identification techniques do not
consider:
• Compositions of multiple vulnerabilities
• Cross-system security events/risks
• Impacts beyond the exploit of a single system

(to the intended service and organization)
Need for systematic, multiple system evaluations
• Notation for expressing a security events and

risks
• Take into account all context

Single system
scope

Need for multisystem risk analysis

23
Building Secure Software for Mission Critical Systems
November 18, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

• Establish threat model
• Determine common

system view
• Inspect connections

between systems
• Evaluate

• Consequences
• Likelihood
• Risk

Security Engineering Risk Analysis approach

Al
er

t O
rig

in
at

or
 (A

O
)

In
iti

at
or

 (e
.g

.,
Fi

rs
t R

es
po

nd
er

)

Fe
de

ra
l

Em
er

ge
nc

y
M

an
ag

em
en

t
Ag

en
cy

 (F
EM

A)

Co
m

m
er

ci
al

M

ob
ile

 S
er

vi
ce

Pr

ov
id

er
s

(C
M

SP
)

Re
ci

pi
en

ts

Workflow View

Stakeholder View

Stakeholder Mission Interest

First responders Get content to the AOS operator within a required timeframe

AOS operators Enter alert message into AOS in the required timeframe

AO managers Maintain their organization’s authority to operate, including applying for and
maintaining certificate for their AOS

FEMA Transmit alert messages to CMSP within a requires timeframe and maintain
trust in WEA and the overall emergency alert system

CMSP Get alert messages to their customers as rapidly as possible without adversely
affecting customer satisfaction

Recipients (residents of given area
covered by WEA)

Indirectly provide funding to the AO funding source
Receive and act on wireless alert messages in the area where they reside

Recipients (transient population
visiting an area)

Receive and act on wireless alert messages within the given area covered by the
AO

Providers and maintainers of AOS Maintain trust in the services provided and in the security of their equipment

AO funding source (e.g.,
government)

Provide funding to operate the WEA service

AO community Promote the value of the WEA service.
Share information related to the WE service (e.g., problems, lessons learned)

Stakeholder View

Network View

Data Requirements

Data Element Form Confidentiality Integrity Availability

Initiator alert request Verbal or
Electronic

There are no restrictions on who can
view this data element. (public data)

The data element must be correct and
complete. (high data integrity)

This data element must be available
when needed. (high availability)

Alert message content Verbal,
Electronic, or
Physical

There are no restrictions on who can
view this data element. (public data)

The data element must be correct and
complete. (high data integrity)

This data element must be available
when needed. (high availability)

CAP‐compliant alert
message

Electronic There are no restrictions on who can
view this data element. (public data)

The data element must be correct and
complete. (high data integrity)

This data element must be available
when needed. (high availability)

IPAWS certificate Electronic Only authorized people can view this
data element. (sensitive but
unclassified)

The data element must be correct and
complete. (high data integrity)

This data element must be available
when needed. (high availability)

IPAWS receipt status Electronic There are no restrictions on who can
view this data element. (public data)

The data element must be correct and
complete. (high data integrity)

No availability requirement for this data
element.

Data View

Physical View

Use Case Scenario

Step Actor and Action Data Items involved Technology Security Controls/Relevant
Standards and Regulations

1 AOS operator logs on to the AOS using account and authenti-
cation information [Note: operator log on and session auditing
(next step) are performed by team at start of shift]

Account information
Authentication information
Procedures

AOS Client
AO Desktop
Server
USB?

User authentication
Firewall

2 AOS logon activates auditing of the AOS operator’s session
starting the session log.

Session log
Backup of session log

Session log software
Server

3 AOS operator enters the approved alert message (text and
optional audio/visual) including the relevant command “alert”,
“cancel”, or “update message” with status of “actual”1 indicating
this is an actual alert or command. [also includes the distribu-
tion channels via FEMA, of which wireless is the only relevant
channel, and the actual geographic distribution for the alert]

Alert message
Command (which is incorporated
into CAP-compliant message)
Procedures
Alert scripts
Session log data – record of
input and all the sources it went
to (in addition to wireless)

4 AOS converts alert message to CAP-compliant format. Alert message (original format,
text piece)
Alert message in CAP-compliant
format
Backup or saved version of
CAP-compliant message
Session log data

AOS Database server
AOS server

5 AOS transmits alert message to the IPAWS-OPEN Gateway. Alert message (CAP-compliant
format)
Session log data
IPAWS certificate

6 IPAWS-OPEN Gateway verifies2 alert message using authen-
tication information and logs the receipt of message in IPAWS
log.

Alert message
Status message
Authentication information
Message validation scripts
IPAWS log

7 AOS operator pulls the IPAWS receipt status from IPAWS log. IPAWS log/IPAWS Receipt Sta-
tus
Procedures for checking IPAWS
log

1 Other status values include “test” and “system.” Test will be addressed in an another use case.

2 In this table, message verification includes authenticating the message and ensuring that it is in the correct format.

Use-Case View

Comprehensive context Determining actions

http://resources.sei.cmu.edu/library/asset‐view.cfm?assetid=427321

24
Building Secure Software for Mission Critical Systems
November 18, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Development

25
Building Secure Software for Mission Critical Systems
November 18, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Integrating security into Agile development
1. Code hygiene – introduce secure coding

2. Secure DevOps – include security tools

3. Threat modeling – represent a new role

4. Risk analysis – prioritize in backlog

Persona
non grata

Code hygiene
Secure DevOps

Threat modeling

Risk analysis

(See also: Bellomo and Woody, DoD
Information Assurance and Agile:
Challenges and Recommendations
Gathered Through Interviews with Agile
Program Managers and DoD
Accreditation Reviewers
(http://repository.cmu.edu/cgi/viewconten
t.cgi?article=1674&context=sei)

26
Building Secure Software for Mission Critical Systems
November 18, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Adoption of secure coding rules

Training
Integrated

development
environments

27
Building Secure Software for Mission Critical Systems
November 18, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Coding rules

• Collected wisdom of programmers
and tools vendors

• Fed by community wiki
started in Spring 2006

• 1,576 registered contributors
• Basis for ISO Standard

28
Building Secure Software for Mission Critical Systems
November 18, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Learning from rules and recommendations

Rules and recommendations in the secure coding standards focus to improve behavior

The “Ah ha” moment:
Noncompliant code
examples or
antipatterns in a pink
frame—do not copy and
paste into your code

Compliant solutions in a
blue frame that conform
with all rules and can be
reused in your code

29
Building Secure Software for Mission Critical Systems
November 18, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Secure Coding in C/C++ Training
The Secure Coding course is designed for C and C++
developers. It encourages programmers to adopt security
best practices and develop a security mindset that can
help protect software from tomorrow’s attacks, not just
today’s.

Topics
• String management
• Dynamic memory management
• Integral security
• Formatted output
• File I/O

Additional information at ttp://www.sei.cmu.edu/training/p63.cfm

30
Building Secure Software for Mission Critical Systems
November 18, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Tools encourage application of secure coding
Moving rules into IDE improves
application of secure coding

• Early feedback corrects errors on
introduction

• Exceptions are understood in context
• Feedback improves developer skill

Target Clang static analyzer (C based
languages)

• Widely used open source front end for
popular compilers

• Integrated into Apple’s Xcode IDE

Target FindBugs (Java)
• Integrated into Eclipse and JDeveloper

31
Building Secure Software for Mission Critical Systems
November 18, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Software depends on a supply chain of
components

General
Ledger

SQL Server WebSphere

HTTP
server

XML Parser

Oracle DB SIP servlet
container

GIF library

Note: hypothetical application composition

Collective development –
context:
• Too large for single

organization
• Too much specialization
• Too little value in individual

components

Development is largely assembly

32
Building Secure Software for Mission Critical Systems
November 18, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Substantial open source contained in supply
chain

• At least 75% of organizations rely on
open source as the foundation of their
applications

• Most applications are now assembled
from hundreds of open source
components, often reflecting as much
as 90% of an application

Distributed development –
context:
• Amortize expense
• Outsource non-

differential features
• Lower acquisition

(CapEx) expense

Source: Sonatype, 2014 Sonatype Open Source Development and Application Security Survey;

33
Building Secure Software for Mission Critical Systems
November 18, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Open source is not secure
Heartbleed and
Shellshock were
found by exploitation

Other open source
software illustrates
vulnerabilities from
cursory inspection

Sources: Steve Christey (MITRE) & Brian Martin (OSF), Buying Into the Bias: Why Vulnerability Statistics
Suck, https://media.blackhat.com/us-13/US-13-Martin-Buying-Into-The-Bias-Why-Vulnerability-Statistics-
Suck-Slides.pdf; Sonatype, Sonatype Open Source Development and Application Security Survey; Aspect
Software “The Unfortunate Reality of Insecure Libraries,” March 2012

46 million vulnerable
open source
components

downloaded annually

26% of the most
common open source
components have high

risk vulnerabilities

34
Building Secure Software for Mission Critical Systems
November 18, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Open source supply chain has a long path

App server

HTTP
server

XML
Parser

C
Libraries

C compiler

Generated
Parser

Parser
Generator

2nd

Compiler

35
Building Secure Software for Mission Critical Systems
November 18, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Corruption in the tool chain already exists

• XcodeGhost corrupted
Apple’s development
environment

• Major programs affected

• WeChat
• Badu Music
• Angry Birds 2
• Heroes of Order & Chaos
• iOBD2

Sources: http://www.macrumors.com/2015/09/24/xcodeghost-top-25-apps-apple-list/
http://www.itntoday.com/2015/09/the-85-ios-apps-affected-by-xcodeghost.html

36
Building Secure Software for Mission Critical Systems
November 18, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Existing Customer Premise Equipment (SOHO)
typically vulnerable

54%46%

100
%

0%

54% of tested routers are vulnerable to
cross-site request forgery (CSRF)

85% of tested routers use non-unique default
credentials

63% of tested routers are vulnerable to DNS
spoofing attacks

100% of router firmware use BusyBox versions from
2011 or earlier and embedded Linux kernel versions
from 2010 or earlier

Source: Land, J. "Systemic Vulnerabilities in Customer-Premises Equipment Routers," unpublished white paper, 2015

37
Building Secure Software for Mission Critical Systems
November 18, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Connecting automotive systems to internet
opens system to attack

Extending systems opens
vulnerabilities not anticipated
• Optimizations performed

assuming one attack method
• Assumptions no longer hold

with additional integrations

Studies suggest that new
operational environments are a
leading cause for introducing new
vulnerabilities in existing systems.

Source: http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

Clark, Frei, Blaze, Smith, “Familiarity Breeds Contempt: The Honeymoon Effect and the Role of Legacy Code in Zero-Day Vulnerabilities,” ACSAC

’10 Dec. 6-10, 2010, p. 251-260.”

38
Building Secure Software for Mission Critical Systems
November 18, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Need to manage software supply chain
Software Supply Chain risk
for a product needs to be

reduced to acceptable level

Supplier follows
practices that
reduce supply

chain risks

Delivered or
updated product

is acceptably
secure.

Product
Distribution

Operational
Product
Control

Product is used in
a secure manner.

Methods of
transmitting the
product to the

purchaser guard
again tampering

Product
Security

Supplier
Capability

39
Building Secure Software for Mission Critical Systems
November 18, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Deployment and operations

40
Building Secure Software for Mission Critical Systems
November 18, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Static Testing – Source code analysis tools

Secure Code Analysis Laboratory
(SCALe)
• C, C++, Java, PERL, Python, Android

rule conformance checking
• Thread safety analysis
• Information flows across Android

applications
• Operating system call flows
Static testing optimization
• SCALe set up
• SCALe filters and visualizer
• Tool conformance and capability

testing
• Multitool integration and statistical

optimizer

41
Building Secure Software for Mission Critical Systems
November 18, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

SCALe Multitool evaluation
Improve expert review
productivity by focusing on
high priority violations

Filter select secure coding rule
violations

• Eliminate irrelevant
diagnostics

• Convert to common CERT
Secure Coding rule
labeling

Single view into code and all
diagnostics
Maintain record of decisions

42
Building Secure Software for Mission Critical Systems
November 18, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Dynamic testing and evaluation – fuzzing

Fuzz testing of attack surfaces
• Based on techniques used in CERT’s Basic

Fuzzing Framework (BFF)
• mutational fuzzing
• machine learning and evolutionary computing

techniques
• adjusts its configuration parameters based on

what it finds (or does not find) over the course of
a fuzzing campaign

43
Building Secure Software for Mission Critical Systems
November 18, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Automation; Acquisition (Supply chain); Building skills (Workforce development); Metrics, Models, and Measurement

Review: Secure Software Development Lifecycle

Mission Ready Diagnostics;
Threat Modeling;

SQUARE;
Security Engineering

Risk Analysis

Architecture Analysis
& Design Language

Team Software Process;
Secure TSP;
Secure Agile;

Secure Coding;
SCALe

Run time
support;

Vulnerability
Analysis

Forensic
Operations

&
Investigations

Software Assurance Framework

44
Building Secure Software for Mission Critical Systems
November 18, 2015
© 2015 Carnegie Mellon University
Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Contact Information

Mark Sherman
(412) 268-9223

mssherman@sei.cmu.edu

Web Resources (CERT/SEI)
http://www.cert.org/
http://www.sei.cmu.edu/

