For many organizations, the achievement of business and mission goals is frustrated by software system problems such as

- poor quality—seen in, for example, systems crashing or behaving unpredictably, or users judging that a system is unusable; and
- slow time to market—seen in missed integration deadlines due to difficulty in identifying root causes of problems

In the Architecture-Centric Engineering (ACE) Initiative, we aim to improve product development and quality by using architecture to gain early confidence in achieving system-related business and mission goals.

Our Work

We develop and use techniques for analyzing quality attribute behavior based on a system’s architecture. Our current research focuses on quality attribute foundations in cyber-physical systems, architecture-centric practices for large-scale systems, and architecture principles for ultra-large-scale (ULS) systems.

The ACE approach results in

- early identification and mitigation of design risks—yielding fewer downstream, costly problems and cost savings in integration and test
- predictable system quality—creating competitive advantage
- flexibility—enabling cost-effective system evolution

How We Can Help

The ACE team can help organizations and individuals through

- designing and analyzing software, system, and system-of-systems (SoS) architectures relative to business and mission goals
- developing precise models and quantitative analyses of systems for mission-critical quality attributes such as safety, performance, and reliability
- evaluating architecture evolution technical plans
- reconstructing a system’s architecture from its implementation
- assessing and improving organizational architecture competence
- coaching to help introduce architecture-centric development to a software organization

Our Methods

- **Architecture Tradeoff Analysis Method® (ATAM®)**—for evaluating software architectures relative to quality attribute goals
- **Architecture Analysis and Design Language (AADL)**—for specifying analyzable architecture models and enabling early discovery of integration problems
- **Architecture Improvement Workshop (AIW)**—for improving software architectures relative to quality attribute goals
- **Architecture Evolution Workshop (AEW)**—for evaluating architecture evolution plans relative to evolution-specific quality attribute goals
- **Attribute-Driven Design (ADD) Method**—for designing the software architecture of a software-intensive system
- **Quality Attribute Workshop (QAW)**—for identifying a system’s architecture-critical quality attributes
- **Mission Thread Workshop (MTW)**—for eliciting an SoS’s mission threads and augmenting them with architecture-critical quality attributes
- **Architecture Documentation, Views and Beyond (V&B) Approach**—for
guidance on documenting a software architecture

- Active Reviews for Intermediate Designs (ARID)—for ensuring quality detailed designs in software
- Cost Benefit Analysis Method (CBAM)—for determining the costs and benefits of architectural decisions

Our Courses

- Courses in software architecture essentials, documenting software architecture, software architecture design and analysis, ATAM Evaluator and Leader roles, and modeling system architectures
- Software Architecture Professional and ATAM Evaluator certificates
- SEI certification program for ATAM Leaders

Research Collaboration Opportunities

ACE researchers are interested in teaming with in areas such as

- developing techniques for agile architecting to balance rapid capability delivery with preparation for future capability delivery
- investigating the use of economic analyses for architecture evolution
- developing new metrics and approaches for using architecture knowledge to assure the reliability of software-reliant systems
- investigating techniques for using architecture knowledge to reduce system testing
- developing resource allocation strategies and analyses for predicting real-time performance
- developing analytic techniques for making system-wide tradeoffs between conflicting quality attributes
- identifying SoS architecture patterns and associated quality attribute analyses
- developing protocols and analyses for ensuring predictable quality of service in wireless devices
- investigating the use of scalable static analysis in the migration of systems to multi-core platforms
- investigating the use of market-based mechanisms for resource allocation

Relationship to Other SEI Work

The ACE Initiative resides within the Research, Technology, and System Solutions (RTSS) Program, which is part of the Carnegie Mellon® Software Engineering Institute (SEI). The RTSS team focuses on the structure and behavior of software-reliant systems—and the intimate relationship between structure and manifested quality attributes—to enable assured and flexible system capabilities at all scales.

Related Website

www.sei.cmu.edu/architecture/

For More Information

SEI Customer Relations
Phone: 412-268-5800
FAX: 412-268-6257
Email: info@sei.cmu.edu

Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh, PA 15313-2612

About the SEI: The SEI is a federally funded research and development center that provides the technical leadership to advance the practice of software engineering, so that software-reliant systems can be acquired and sustained with predictable and improved cost, schedule, and quality.