

Model-Driven Engineering: Automatic
Code Generation and Beyond

John Klein
Harry Levinson
Jay Marchetti

March 2015

TECHNICAL REPORT
CMU/SEI-2015-TN-005

Software Solutions Division

http://www.sei.cmu.edu

http://www.sei.cmu.edu

Copyright 2015 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract
No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineer-
ing Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the United States Department of Defense.

References herein to any specific commercial product, process, or service by trade name, trade mark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation,
or favoring by Carnegie Mellon University or its Software Engineering Institute.

This report was prepared for the
SEI Administrative Agent
AFLCMC/PZM
20 Schilling Circle, Bldg 1305, 3rd floor
Hanscom AFB, MA 01731-2125

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON
UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE
OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY
WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK,
OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted be-
low.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material
for internal use is granted, provided the copyright and “No Warranty” statements are included with all
reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distrib-
uted in written or electronic form without requesting formal permission. Permission is required for any
other external and/or commercial use. Requests for permission should be directed to the Software En-
gineering Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon Univer-
sity.

DM-0001604

mailto:permission@sei.cmu.edu

CMU/SEI-2015-TN-005 | i

Table of Contents

Acknowledgments vii

Executive Summary ix

Abstract xi

1 Introduction 1
1.1 New Opportunities 1
1.2 Software Acquisition and MDE Challenges 1
1.3 MDE Tool and Process Risks 2
1.4 Structure of This Report 3

2 Overview of Model-Driven Software Engineering 4
2.1 Model-Driven Engineering and the Software Development Lifecycle 4
2.2 MDE Is Tools and Methods 6
2.3 MDE Presents Both Opportunity and Challenges 7

3 Acquisition Strategy Implications 8
3.1 Artifacts, Data Rights, and Licenses 8
3.2 Design Review Scope and Timing 8
3.3 Impact on Program Risk 9

3.3.1 Maintainability (Part of Sustainment) 9
3.3.2 Certification (Including Cybersecurity, Safety, and Airworthiness) 10
3.3.3 Cybersecurity Assurance 11
3.3.4 Runtime Portability (Part of Sustainment and Open System Architecture) 11
3.3.5 Runtime Performance 12
3.3.6 Usability of Generated User Interfaces 12

4 Selecting and Evaluating MDE Tools 13
4.1 Planning the Evaluation 13
4.2 Establishing the Criteria 14
4.3 Collecting the Data 15
4.4 Analyzing the Data 15
4.5 Interpreting Vendor Responses to the Data Collection Questionnaire 15

4.5.1 Questionnaire Part 1 – Demographics 15
4.5.2 Questionnaire Part 2 – Licensing and Delivery 16
4.5.3 Questionnaire Part 3 – Modeling 17
4.5.4 Questionnaire Part 4 – Target Environment 18

5 Conclusions 20

Appendix A Tool Evaluation Criteria 21

Appendix B MDE Tool Vendor Self-Assessment Instrument 28

References 34

CMU/SEI-2015-TN-005 | ii

CMU/SEI-2015-TN-005 | iii

List of Figures

Figure 1: MDE Uses Models as Primary Artifacts (After diagram by Rumpe [Brambilla 2012a]) 5

Figure 2: The PECA Process [Comella-Dorda 2004] 13

CMU/SEI-2015-TN-005 | iv

CMU/SEI-2015-TN-005 | v

List of Tables

Table 1: Evaluation Criteria – Product Engineering Risk Area 21

Table 2: Evaluation Criteria – Development Environment Risk Area 24

Table 3: Evaluation Criteria – Program Constraints Risk Area 26

Table 4: Self-Assessment Instrument for MDE Tools 29

CMU/SEI-2015-TN-005 | vi

CMU/SEI-2015-TN-005 | vii

Acknowledgments

We thank all of the vendors who participated in the pilot application of our questionnaire. In par-
ticular, we thank representatives of Integranova (http://www.integranova.com) for their responses
and comments.

http://www.integranova.com

CMU/SEI-2015-TN-005 | viii

CMU/SEI-2015-TN-005 | ix

Executive Summary

Acquisition executives, in domains ranging from modernizing legacy business systems to devel-
oping real-time communications systems, often must deal with the following challenge:

Vendors claim that by using model-driven engineering (MDE) tools, they can generate
software code automatically and achieve extremely high developer productivity. Are
these claims true?

The simple answer is, yes, the state of the practice can achieve productivity rates of thousands of
function points and millions of lines of code per person-month using MDE tools for automatic
code generation. But the complicated reality is that MDE consists of more than code generation
tools; it is a software engineering approach that can affect the entire lifecycle from requirements
gathering through sustainment. An acquirer must consider this approach in the context of a partic-
ular system acquisition. Aligning MDE methods and tools with the system acquisition strategy
can improve system quality, reduce time to field, and reduce sustainment cost. On the other hand,
when MDE methods and tools do not align with the acquisition strategy, using them can result in
increased risk and cost in development and sustainment.

This report focuses on the application of MDE tools for automatic code generation in the context
of the full system lifecycle from development to sustainment. Acquisition programs in govern-
ment or large commercial enterprises have unique concerns. These acquirers have the challenge of
selecting contractors to develop their systems. Then, the tools and processes selected by the con-
tractors and developers have direct impact on the software quality concerns of the acquirer, who
often has little influence on the selection of these tools and processes. Thus, the acquirer’s process
for selecting performers must include evaluating both the development team and the development
methodology and tools in the context of the system acquisition strategy. This report provides
guidance for selecting, analyzing, and evaluating MDE tools when acquiring systems built using
these software development tools and processes.

In Section 2, we first define some terminology of MDE methods and tools and then explain the
basic approach of using MDE for automatic code generation. While this report focuses primarily
on MDE tools—specifically, tools for automatic code generation—we emphasize that MDE con-
sists of both tools and methods. MDE tools are based on engineering methods and techniques and
provide automated assistance to engineers using those techniques. An organization should con-
duct tool categorization and assessment only after it has gained an understanding of software en-
gineering methods and has determined which methods it will adopt. Acquirers are concerned with
the full system lifecycle, and they need confidence that the development methods will enable the
system to meet the functional, quality, cost, and schedule objectives for both development and
sustainment throughout the life of the system. The challenge of selection, evaluation, and use of
MDE tools is to support the execution of one or more methodologies from beginning to end. The
decision to adopt MDE methods for automatic code generation and the selection of appropriate
supporting tools cannot be made in isolation.

Section 3 discusses how the use of MDE tools for automatic code generation can affect acquisi-
tion strategy. An acquisition strategy includes identifying the artifacts and data rights to acquire
and the artifacts to evaluate at each program decision point. An MDE approach requires securing

CMU/SEI-2015-TN-005 | x

the necessary data rights and licensing for the tools, models, generated code, runtime libraries,
frameworks, and other supporting software; otherwise, sustainment and evolution become more
difficult. The acquirer must also review and evaluate appropriate artifacts at the right time in the
acquisition cycle; however, acquirers using MDE approaches may need to expand the evaluation
scope and criteria to account for using the model not just to represent the architecture for commu-
nication among stakeholders but also to generate the executing software. The acquisition strategy
also defines the approach to managing program risks, including risk identification and mitigation.
MDE approaches can introduce new program risks, including maintainability, certification, cyber-
security assurance, runtime portability, runtime performance, and interface usability risks.

Section 4 provides guidance on selecting and evaluating MDE tools in the context of risks to an
organization’s system acquisition effort. We use the PECA (Plan, Establish, Collect, Analyze)
method, as described by Comella-Dorda and colleagues [Comella-Dorda 2004]. We explain how
to use the PECA method to set up an MDE tool evaluation that will consider the MDE benefits
and risks described in Section 3. To this end, we discuss a vendor self-assessment questionnaire
that we piloted with two MDE tool vendors. We also provide examples of how to interpret vendor
responses to the data collection questionnaire, illustrated with responses received during a pilot
application of the questionnaire with several tool vendors. The questionnaire will help acquirers
collect information about a vendor’s demographics and approaches to licensing and delivery of
products and services, modeling representations, and transitioning products and services to the
program’s target environment. Two appendices to this report provide the questionnaire and a risk-
driven framework for evaluating tools with cross-references to the vendor questionnaire that relate
to acquisition concerns.

Section 5 offers conclusions and additional areas of investigation. While MDE promises to im-
prove the efficiency of developing, delivering, and sustaining software, these benefits come with
some challenges: An acquirer must select an MDE process appropriate to its system requirements,
domain characteristics, and stakeholders’ needs. The acquirer must also evaluate contractors’ and
developers’ selection of the appropriate tool set to implement the development, integration, and
testing of the MDE solution. In addition, acquirers must address sustainment concerns from the
beginning of the acquisition process. Research on the promise of MDE is ongoing. Additional ar-
eas of investigation include fully mapping the acquisition strategy to areas and questions that are
relevant to using an MDE methodology, using domain-specific languages as opposed to the stand-
ards-based Unified Modeling Language, integrating multiple models, measuring the economics of
MDE, and using MDE to achieve correctness by construction.

CMU/SEI-2015-TN-005 | xi

Abstract

Increasing consideration of model-driven engineering (MDE) tools for software development ef-
forts means that acquisition executives must more often deal with the following challenge: Ven-
dors claim that by using MDE tools, they can generate software code automatically and achieve
high developer productivity. However, MDE consists of more than code generation tools; it is
also a software engineering approach that can affect the entire lifecycle of a system from require-
ments gathering through sustainment. This report focuses on the application of MDE tools for au-
tomatic code generation when acquiring systems built using these software development tools and
processes. The report defines some terminology used by MDE tools and methods, emphasizing
that MDE consists of both tools and methods that must align with overall acquisition strategy.
Next, it discusses how the use of MDE for automatic code generation affects acquisition strategy
and introduces new risks to the program. It then offers guidance on selecting, analyzing, and eval-
uating MDE tools in the context of risks to an organization’s acquisition effort throughout the sys-
tem lifecycle. Appendices provide a questionnaire that an organization can use to gather
information about vendor tools along with criteria for evaluating tools mapped to the question-
naire that relate to acquisition concerns.

CMU/SEI-2015-TN-005 | xii

CMU/SEI-2015-TN-005 | 1

1 Introduction

1.1 New Opportunities

Quite often, acquisition executives, in domains ranging from modernizing legacy business sys-
tems to developing real-time communications systems, have to deal with the following challenge:

Vendors claim that by using model-driven engineering (MDE) tools, they can generate soft-
ware code automatically and achieve extremely high developer productivity. Are these
claims true?

The simple answer might be, “yes, the state of the practice can achieve productivity rates of thou-
sands of function points and millions of lines of code per person-month using MDE tools for auto-
matic code generation.” The complicated reality is that MDE consists of more than code
generation tools; it is a software engineering approach that can impact the entire lifecycle from
requirements gathering through sustainment. While one can make broad generalizations about
these methods and tools, it is more useful to consider them in the context of a particular system
acquisition. Aligning MDE methods and tool capabilities with the system acquisition strategy can
improve system quality, reduce time to field, and reduce sustainment cost. On the other hand,
when MDE methods and tools do not align with the acquisition strategy, using them can result in
increased risk and cost in development and sustainment.

We have focused this report on the application of MDE tools for automatic code generation, but
we will position this activity in the context of the full system lifecycle, from concept development
through sustainment.

1.2 Software Acquisition and MDE Challenges

Firms such as Gartner, Forrester, and IDC assess and analyze MDE technology for commercial IT
developers and providers.1 In contrast, this report focuses on the unique concerns that arise in ac-
quisition contexts such as the Department of Defense (DoD), other government organizations, or
large commercial enterprises. The tools and processes selected by the developer and contractor
have direct impact on the software quality concerns of the acquirer, but often the acquirer has lit-
tle direct influence on the selection of these tools and processes. This report highlights the chal-
lenges and provides guidance for selecting, analyzing, and evaluating MDE tools when acquiring
systems built using these software development tools and processes.

MDE tools for automatic code generation cannot be considered in isolation: In all of software en-
gineering, there is a tight coupling between the system domain (e.g., business system, command
and control system, or avionics system), the methods used throughout the system lifecycle, and
the tools used to support the chosen methods. Furthermore, acquirers such as the government have
the challenge of selecting contractors to develop their systems. This selection process includes
evaluating the development team along with the development methodology and tools in the con-
text of the system acquisition strategy.

This coupling leads to acquisition evaluation questions such as the following:

1 Access analysis of MDE at http://www.gartner.com, http://www.forrester.com, and http://www.idc.com.

http://www.gartner.com
http://www.forrester.com
http://www.idc.com

CMU/SEI-2015-TN-005 | 2

 Do the engineering process and associated development tools match the desired acquisition
strategy?

 Do the tools support the developer’s software development methodology?

 Are the code generation tools capable of integrating with other development and management
tools to support measurement and monitoring of development progress?

 Will the selected development methodology with its associated tools be available and compat-
ible for the expected lifecycle of the system?

These questions might apply to an acquisition that does not include MDE for automatic code gen-
eration. But because MDE development tools have a larger influence on system qualities (e.g.,
performance, security, and modifiability) than traditional software development tools such as
compilers, the scope of the acquisition evaluation must be adjusted to include attention to tooling.

While the categorization, assessment, and selection of methods and tools are related, the issues are
sufficiently different that they should be treated separately. Tool assessment and selection should
be conducted by an organization only after it has gained an understanding of software engineering
methods and has decided which methods it will adopt [Firth 1987a].

Finally, the artifacts produced by an MDE software development process are different from those
of a traditional software development process. Thus, the acquisition strategy and plan must iden-
tify the appropriate artifacts and address the timing and subject of the artifact evaluations.

1.3 MDE Tool and Process Risks

The use of MDE technology for automatic code generation impacts the quality attributes of the
software produced. Fundamentally, MDE tools should be treated as commercial, off-the-shelf
(COTS) products, and they bring many of the same risks. We provide three examples here and an-
alyze the effect of MDE on these and other quality attributes more broadly later in this report.

 Maintainability: Sustainment and evolution projects using MDE models and automatic code
generation may be more efficient and have a shorter and less expensive development cycle,
compared to traditional approaches. However, using them creates a dependency on the MDE
tools to manipulate the model and generate code, and introduces risks associated with the
continued availability of the tools and compatibility of new releases of the tools. Transition-
ing away from an MDE approach to perform sustainment and evolution by directly changing
the automatically generated code can be time consuming and expensive, because the automat-
ically generated code is usually not structured for human readability and understanding.

 Certification: Certification approaches that rely on source code inspection or analysis may
have difficulty operating on automatically generated code, which is not structured for human
readability and is often larger in volume (lines of code) than manually generated codebases.
Furthermore, the automatically generated code may depend on runtime libraries developed by
the tool vendor, for which there is no source code or documentation available. Finally, the au-
tomatically generated code and dependent libraries introduce new supply chain vulnerabilities
that must be considered.

CMU/SEI-2015-TN-005 | 3

Portability to new hardware and software infrastructure: Certain MDE automatic code gener-
ation approaches, such as those based on the Object Management Group’s Model-Driven Archi-
tecture® (OMG MDA®) standards, promise easy portability to new hardware and infrastructures.
However, the software models used in these approaches can be as complex as the code developed
in a traditional “code-driven” solution, thus reducing the development and sustainment benefits of
MDE. On the other hand, other MDE automatic code generation approaches use simpler models
that more closely match the target system domain, offering fast development and evolution at the
expense of runtime portability. Failure to identify and mitigate the risks introduced when using
MDE for automatic code generation impacts initial development cost, schedule, and quality and
has significant impacts on other lifecycle processes and on long-term sustainment of the system.

1.4 Structure of This Report

Earlier Software Engineering Institute (SEI) reports have addressed the categorization and evalua-
tion of software engineering methods, tools, and products [Firth 1987a, 1987b; Wood 1988;
Comella-Dorda 2004]. This report discusses how MDE methods and tools fit into the guidance,
taxonomies, and frameworks presented in these reports, which are still generally applicable.

In Section 2, we define the terminology used by MDE methods and tools. Section 3 discusses how
the use of MDE for automatic code generation impacts acquisition strategy. Section 4 provides
guidance on selecting and evaluating MDE tools in the context of risks to an organization’s sys-
tem acquisition effort.

CMU/SEI-2015-TN-005 | 4

2 Overview of Model-Driven Software Engineering

2.1 Model-Driven Engineering and the Software Development Lifecycle

In practice, several terms are used to identify software development approaches that center on
models as primary artifacts (in contrast to traditional processes that use source code as the primary
artifact). These terms include [Mittal 2013]

 model-driven engineering (MDE)
 model-driven development (MDD)
 model-driven system/software engineering (MDSE)
 model-based engineering (MBE)
 model-based system/software engineering (MBSE)
 model-driven architecture (MDA)

The only one of these terms that has a precise definition is MDA, which is defined by a set of
standards promulgated by the OMG [OMG 2003].

In this report, we use the term MDE to refer descriptively to a software development approach
that treats models as the primary artifacts created and used by software lifecycle processes. The
enabling tools and technologies include a broad spectrum of capabilities that may provide value
for developers, acquirers, and end users.

The topic is complicated by the different perspectives, motivations, and pathways that are taken in
considering and adopting the approach [Selic 2008, Whittle 2014]. For example, MDE can be po-
sitioned as a solution to

 platform independence [OMG 2003]

 software reuse [Greenfield 2004]

 creating trustworthy software [Weigert 2006]

 architecture analysis of runtime qualities [Feiler 2012]

 bridging from problem definition to solution synthesis [Pastor 2007]

 implementation of a formal specification [Davies 2014]

 “grand unified theory” of software engineering [Diskin 2012]

Except for the last item, these are all possible motivations for DoD acquisition to consider using
MDE.

Finally, the topic is also complicated because the term model can be defined in many ways. We
will adopt the general definition given by Brambilla and colleagues, who define a model as

a simplified or partial representation of reality, defined in order to accomplish a task or
reach an agreement on a topic [Brambilla 2012b]

This definition is similar to that used by the OMG MDA specification [OMG 2003],
ISO/IEC/IEEE standard for architecture documentation [ISO 2011], and DoD Architecture
Framework [DoD 2010].

CMU/SEI-2015-TN-005 | 5

As depicted in Figure 1, an MDE approach uses models directly, rather than using source code, as
the basis for most software engineering tasks, including

 rapid prototyping
 static analysis (architecture, completeness, correctness)
 dynamic analysis via executable models
 documentation
 refactoring and transformation
 generation of executable code

 automated testing

Figure 1: MDE Uses Models as Primary Artifacts (After diagram by Rumpe [Brambilla 2012a])

It is important to recognize that there is no single model of a system; instead, there can (and
should) be multiple models. Models provide leverage by enforcing separation of concerns: Each
model is a simplified view of the system focused on the concerns related to one of these software
engineering tasks, and it omits details about the system that are unnecessary to accomplish that
task. For example, a model concerned with analyzing performance might need to represent only
the best case and worst case execution times for a calculation. On the other hand, a model con-
cerned with analyzing safety and liveness might need to represent only the external resources
needed by the calculation and the order in which the resources are acquired and freed. Finally, a
model concerned with generating code for the calculation might represent only the target platform
and the exact algorithm to be used. In this way, models help us complete each task more effi-
ciently, often by allowing us to use tools to automate the task.

Since each model addresses only a subset of our concerns, we usually need several models to per-
form all of the required software engineering tasks. When we have multiple models, we have to
maintain consistency between models and the implementation, consistency among the models

ModelsRapid
Prototyping

Analysis

Documentation

Refactoring /
Transformation

Code
Generation

Automated
Testing

Other Tasks

CMU/SEI-2015-TN-005 | 6

across tasks, and consistency among the models throughout the lifecycle to correctly and com-
pletely represent our system.

Each model is represented using a modeling language that has a graphical representation, a textual
representation, or both. Typical modeling languages include the standards-based Unified Model-
ing Language (UML) and Architecture Analysis and Design Language (AADL) and proprietary
languages such as the Integranova Model Execution System (M.E.S.).2 Generally, each MDE tool
supports development and analysis of models using only one modeling language (although a tool
may import and export other languages), so the selection of tool and modeling language are
tightly coupled.

2.2 MDE Is Tools and Methods

While this report focuses primarily on MDE tools and, more specifically, tools for automatic code
generation, it is important to remember that tools are based on engineering methods and tech-
niques and provide automated assistance to engineers using those techniques. An organization
should conduct tool categorization and assessment only after it has gained an understanding of
software engineering methods and has determined which methods it will adopt. While the catego-
rization and assessment of methods and tools are related, the issues are sufficiently different that
they should be treated separately. The issues that arise in understanding, evaluating, and using
particular MDE methods will be discussed in subsequent SEI publications, where they can be ad-
dressed in depth.

Acquirers are usually concerned with the full system lifecycle, and they need confidence that the
development methods to be used will enable the system to meet the functional, quality, cost, and
schedule objectives for both initial development and sustainment throughout the life of the sys-
tem. The challenge of selection, evaluation, and use of MDE tools is to support the execution of
one or more methodologies from beginning to end. Some of the concerns include the following:

 How well does the MDE tool support the method in exposing flaws in the requirements and
support the creation of appropriate documentation?

 Does the tool support the method in validation of requirements early in the lifecycle?

 How does the tool support the method in description and validation of the quality attributes
expected in the system?

 Can the MDE tool support the design, development, implementation, and sustainment of the
system throughout its lifecycle?

 Does the MDE tool support the partially complete representations of the system design and
implementation to enable appropriate communication between all stakeholders of the system?

 Does the MDE tool support the human parts of the engineering process, including creativity,
innovation, ease of implementation, and identification of defects?

 Does the tool allow changes to be easily incorporated through all levels, from design to im-
plementation, into the target system in a disciplined and uncomplicated manner?

 How can the design method best build on previous work done by others, including reuse and
salvaging of parts at all stages of representation?

2 Access details about these modeling languages at http://www.uml.org, http://www.aadl.info, and http://www.in-

tegranova.com/integranova-m-e-s.

http://www.uml.org
http://www.aadl.info
http://www.in-tegranova.com/integranova-m-e-s
http://www.in-tegranova.com/integranova-m-e-s
http://www.in-tegranova.com/integranova-m-e-s

CMU/SEI-2015-TN-005 | 7

The decision to adopt MDE methods for automatic code generation and the selection of appropri-
ate supporting tools cannot be made in isolation. Since there is no single model of a system, and
different models may be supported by different tools, the acquirer and developer must be con-
cerned about consistency among the models and interoperation among the tools.

2.3 MDE Presents Both Opportunity and Challenges

MDE approaches to software development promise to improve the efficiency and effectiveness of
delivered systems in a number of areas:

 rapid fielding of business systems, including legacy modernization – Several tool vendors tar-
get this domain with tools optimized for these types of systems.

 rapid prototyping for technology demonstration – Use of MDE for quick development to
demonstrate capability and feasibility avoids the sustainment and evolution challenges out-
lined in this report.

 portability/open architecture – Using MDE approaches to separate functionality from plat-
form-specific concerns (using OMG MDA standards, for example) can lead to greater porta-
bility across platforms.

 correctness by construction – Use of MDE approaches to compose systems from validated
components or certified components can reduce cost and risk.

Domain-specific MDE tools provide high leverage in the near term for rapid fielding and rapid
prototyping, where agility and time to fielding are high priorities and where portability and other
lifecycle concerns are lower priorities. While MDE can be used to achieve the portability and
modular substitution of components necessary for successful open architecture approaches, we
see MDE as part of a broader architecture and ecosystem solution that is taking shape. Use of
MDE to achieve “correctness by construction” is achievable today in limited cases such as small
scale or very narrow domains and is an area for further research.

CMU/SEI-2015-TN-005 | 8

3 Acquisition Strategy Implications

An acquisition strategy includes identifying the artifacts and data rights to acquire and the arti-
facts to evaluate at each program decision point. The acquisition strategy also defines the ap-
proach to managing program risks, including risk identification and mitigation [DAU 2014]. The
use of MDE for automatic code generation has several implications for an acquisition strategy.

3.1 Artifacts, Data Rights, and Licenses

Development tooling is usually not a significant concern when acquiring software-intensive sys-
tems, but it can be a significant concern when acquiring a system developed using an MDE ap-
proach, particularly when using MDE for automatic code generation. In MDE-developed
software, the models are the primary development artifacts, embodying the software architecture
design and component designs and ultimately driving the automatic code generation. Ideally, all
sustainment and evolution of the software will also use an MDE approach, which requires data
rights and the necessary licensing for the tools, models, and generated code. When only the auto-
matically generated source code is acquired, without the models used to generate the code, then
sustainment and evolution are more difficult because the automatically generated code is usually
not structured for human readability and comprehension.

In addition, automatically generated code often requires the use of specific runtime libraries,
frameworks, and other supporting software. The licenses, data rights, or both for this additional
software must be taken into account as the development and sustainment strategy of the system is
developed. The tools used to model and generate the code are another set of COTS products that
the acquisition strategy and plan must also include.

Finally, although models may be easier to comprehend than source code, the acquisition strategy
should ensure that appropriate accompanying documentation is provided.

3.2 Design Review Scope and Timing

The acquirer must review and evaluate appropriate artifacts at the right time in the acquisition cy-
cle. For example, in an approach using MDE for automatic code generation, the software architec-
ture documentation may consist of a subset of the code generation model, along with
accompanying documentation to provide context and design rationale. The software architecture
should be evaluated early in the design process, as discussed by Bergey and Jones [Bergey 2013];
however, the evaluation scope and criteria may need to be expanded to account for the use of the
model not just to represent the architecture for communication among stakeholders but also to di-
rectly generate the executing software. Furthermore, if the tool includes or depends on particular
runtime support software (as might be typical for a domain-specific MDE tool, for example), then
the scope of evaluation must also include that software.

The architects may have developed other models, in addition to the code generation model, to ad-
dress other concerns, such as performance analysis. If this is the case, then the architecture evalua-
tion scope must include assessing consistency among the various models.

CMU/SEI-2015-TN-005 | 9

Finally, reviewers may need to use the MDE tools to view the models—exporting the model into
a generic format such as Portable Document Format (PDF) files may not provide the visual reso-
lution and the ability to efficiently navigate through the model. Tool availability and access to the
network where the model is stored become issues that the acquirer must address in planning the
evaluation.

3.3 Impact on Program Risk

An MDE approach promises such things as automatic code generation, improvement of cost and
schedule, reduction of technical risk by enabling early analysis, and the ability to demonstrate ca-
pabilities and validate requirements by using executable models or rapid prototypes.

On the other hand, MDE approaches can introduce new risks. This section identifies some risk ar-
eas that should be considered in the specific context of a particular acquisition program. Note that
there is some overlap in the risks identified: A particular risk may relate to multiple acquisition
concerns.

3.3.1 Maintainability (Part of Sustainment)

The use of MDE for automatic code generation introduces a development time dependency on the
tool chosen to support the process. The chosen tool is used to create and modify the model, which
is then processed to generate the code. Unlike traditional source code, which can be created and
modified by many different tools, the state of the market for MDE tools is that, in most cases, a
model can be edited and modified only by the tool that created it, and changing tools may require
rebuilding the entire model. This dependency has several implications:

 The tool vendor must remain in business and continue to support the tool.

 The tool vendor will continue to evolve the tool. Assessing that new versions of the tool are
compatible with the program’s modeling needs introduces new sustainment costs.

 The tool vendor may evolve the tool in ways that are not compatible with the program’s use
of the tool. For example, the vendor may change or drop features used in the model, such as
file formats or modeling language constructs. This introduces the need to make changes to the
model purely to maintain compatibility with the tools.

 The tool may depend on other software (operating system, file system, or other third-party
software), which may change in ways that break the tool. This can be mitigated by adopting
virtualization technology that makes it possible to take a “snapshot” of the development envi-
ronment, including many of the dependent software packages, and allow dependable execu-
tion of that snapshot at a (much) later date. However, the acquisition plan must account for
storing and archiving the snapshots as deliverable artifacts.

The tool generates code that executes at runtime, introducing a runtime dependency on the tool.
While this is similar to the dependency on the source code compiler in a traditional development
approach, the transformation of model to source code (by the MDE tool) can carry more responsi-
bility for functionality and quality than the transformation from source code to object code (by a
compiler). In addition, the automatically generated source code may still need to be compiled, so
risks associated with the compiler still exist. The runtime dependency on the MDE tool has sev-
eral implications:

CMU/SEI-2015-TN-005 | 10

 The tool vendor will continue to evolve the tool. Assessing that the code generated by new
versions of the tool is compatible with the program’s functional and quality needs introduces
new sustainment costs.

 The tool may generate incorrect or unsuitable code. Finding and repairing this code may be
difficult because the automatically generated code is usually not structured for human reada-
bility and comprehension. Furthermore, the repairs may need to be redeveloped or, at a mini-
mum, reinserted every time new code is automatically generated.

 The tool vendor may modify the tool so that the code generated by the tool no longer satisfies
the program’s requirements. For example, interoperability may be impacted if new versions
of the tool generate code with different performance characteristics or a different approach for
handling runtime errors. Even if the intention is to make the generated code “better”—such as
making the code faster or using a standard error handling approach—modifications to the tool
may break the system.

 The automatically generated code may have runtime dependencies on other software (e.g., a
target operating system, database, or Java® virtual machine [JVM]). These dependencies may
require introducing new packages into the system’s runtime environment, or there may be
version conflicts between the version of a package that the automatically generated code de-
pends on and the version that other software in the system depends on.

3.3.2 Certification (Including Cybersecurity, Safety, and Airworthiness)

Certification authorities assess design information (e.g., models and analyses) but typically also
rely on testing and source code inspection.

Certification issues when MDE is used for automatic code generation can arise from the regula-
tory agencies and the regulations and policies that must be satisfied. For example, the DO-187C
criteria for “design assurance level A” software requires modified condition/decision coverage
(MC/DC) testing. This criteria applies to both the target code and the tools that generate the code.
The high cost of certifying the code generation tools falls on the tool vendor, so few vendors have
performed this testing. As of the date of this report, only the SCADE tool suite from Esterel Tech-
nologies3 has been certified to DO-187B criteria. A related issue is the processes used by the regu-
latory agency. For example, the FAA inspects both manually generated and automatically
generated source code.

Using an MDE approach for automatic code generation has several implications for both initial
certification and recertification during sustainment:

 The automatically generated code may not be compatible with the certification authority’s
testing procedure. For example, the generated code may not provide the test data insertion and
monitoring expected by the certification authority.

 The certification authority may not be able to efficiently or effectively inspect the generated
code. The automatically generated code is usually not structured for human readability and
comprehension.

3 Access information about the SCADE suite at http://www.esterel-technologies.com/products/scade-suite.

http://www.esterel-technologies.com/products/scade-suite

CMU/SEI-2015-TN-005 | 11

 The generated code may depend on runtime libraries supplied by the tool vendor. There may
be no documentation for these libraries, and the source code for the libraries may not be avail-
able for inspection.

 During sustainment, if the model is modified, it may not be possible to identify which of the
generated code modules are affected, preventing incremental recertification.

3.3.3 Cybersecurity Assurance

Previous sections of this report have discussed how the MDE tools for automatic code generation
introduce development time and runtime dependencies. These dependencies have several implica-
tions for cybersecurity assurance:

 As cybersecurity policy and practices evolve, the tool may not generate compliant code. For
example, the tool may not generate code that is compatible with required authorization mech-
anisms, access control policies, or encryption practices. It may be possible to work around
some types of code generation deficiencies by restructuring the model, but other deficiencies
may be impossible to overcome.

 The automatic code generation process is a new source of supply chain vulnerability. The
program must assure that the generated code is free from malware, “back doors,” and other
types of vulnerabilities.

 The automatically generated code may depend on runtime libraries supplied by the tool ven-
dor. These libraries are yet another new source of supply chain vulnerabilities. There may be
no documentation for these libraries, and the source code for the libraries may not be availa-
ble for inspection.

 The automatically generated code may have runtime dependencies on other third-party soft-
ware (e.g., target operating system, database, or JVM), which must be included in cybersecu-
rity assurance assessments and sustained (i.e., security patches applied) for the life of the
system.

3.3.4 Runtime Portability (Part of Sustainment and Open System Architecture)

Portability concerns manifest as a desire to execute the automatically generated code in several
environments, each comprising different hardware and software infrastructure, or the concerns
may manifest as a desire to change the system’s hardware and software infrastructure over time.
The implications are the same in either case:

 The tool may not generate code compatible with the desired hardware and software infra-
structure environment.

 The automatically generated code for different environments may deliver different functional-
ity, deliver different levels of a quality attribute, have different runtime dependencies on
third-party software, or have some combination of these variations. For example, an MDE
tool may generate a graphical user interface for one environment while it generates only a
command line interface for another environment. Or throughput and latency can differ across
the environments. These differences may be due to intrinsic differences in the capabilities
provided by each environment or to technical and business decisions embodied in the tool it-
self. Such variation results in either reduced flexibility in selecting a target environment or
higher sustainment and certification costs because the software is materially different across
the environments.

CMU/SEI-2015-TN-005 | 12

3.3.5 Runtime Performance

The automatically generated code must satisfy the system’s runtime throughput, latency, concur-
rent request processing, and other performance quality requirements. While use of an MDE ap-
proach may provide early confidence that these requirements can be met, if one or more of these
requirements change, there is a risk that the automatically generated code may not satisfy the new
requirement. In some cases, restructuring the model may result in generated code with better per-
formance; in other cases, limitations in the automatically generated code may prevent the system
from ever meeting the new requirements.

3.3.6 Usability of Generated User Interfaces

In some system domains, such as business systems, the MDE tools may generate user interfaces
as part of the automatically generated code. The generated user interfaces may support functions
such as system configuration and administration, system monitoring, and end-user activities.
These generated interfaces have several implications for usability:

 An advantage of using an MDE approach is that user interfaces can be generated and evalu-
ated early in the initial development phase, improving confidence that the first version of the
system will satisfy functional and usability requirements.

 However, as requirements evolve, there is a risk that the generated interfaces do not meet the
new functional and usability requirements. To satisfy the new requirements, significant archi-
tecture changes may be needed, for example, by removing the user interfaces from the auto-
matically generated part of the system and integrating traditionally developed user interface
code with the automatically generated code.

CMU/SEI-2015-TN-005 | 13

4 Selecting and Evaluating MDE Tools

Section 2 described the MDE tool environment in general and some implications of using MDE,
focusing on the software development process decisions. Section 3 noted some of the acquisition
challenges related to adopting an MDE methodology for automatic code generation. This section
assumes that the program has decided to use an MDE approach for automatic code generation and
that the next step is to evaluate and select an appropriate MDE tool.

The MDE tool selection process is just like selecting COTS products for any other domain. Vari-
ous COTS evaluation methods are available: We will use the PECA method, as described in a re-
port by Comella-Dorda and colleagues and shown in Figure 2 [Comella-Dorda 2004, Section 4].
The next four subsections will explain how to use the MDE benefits and risks described previ-
ously to set up an MDE tool evaluation, which includes a vendor self-assessment questionnaire
that we piloted with two MDE tool vendors.

Figure 2: The PECA Process [Comella-Dorda 2004]

4.1 Planning the Evaluation

As described in PECA, planning the evaluation involves creating an evaluation team, defining the
team’s goals, identifying the stakeholders, and then defining the approach for making the final de-
cision. Considerations for the decision approach include how much effort to apply to the evalua-
tion, a basic strategy for selection, and what filters can be used to limit the number of products to
evaluate. For MDE tool selection, acquirers should also consider the following:

 system requirements: Before selecting the development methodology and tools to support
the methodology, the acquirer needs a clear understanding of the system to be developed. The
size of the system and features to be developed will help define the selection criteria.

 domain: The type of system and its unique domain characteristics are very important to the
decision for the appropriate software development methodology. In addition, determinations
about the domain will help define the size and scope of the system to be developed.

CMU/SEI-2015-TN-005 | 14

 stakeholders: The development team’s experience and skill set will be critical to the success
of the overall system development. These factors will influence the software development
methodology selected and determine how much additional training the team will need to use
the methodology and the selected supporting tools.

4.2 Establishing the Criteria

The acquirer must establish criteria with which to decide whether a particular tool for automatic
code generation is suitable for a specific system acquisition. To establish criteria, we use a risk
taxonomy developed by Carr and colleagues to ensure that all relevant acquisition strategy con-
cerns are covered [Carr 1993].

This risk taxonomy has three main sections:

 product engineering, which covers activities that create a system that satisfies the specified
requirements and customer expectations. Risks in this area generally arise from requirements
that are technically difficult to achieve, inadequate requirements and design analysis, or poor
design and implementation quality. These are listed in Table 1 in Appendix A.

 development environment, which includes risks related to the development process and sys-
tem, management methods, and work environment. These are listed in Table 2 in Appendix
A.

 program constraints, which cover risks that arise from factors external to the project. These
are listed in Table 3 in Appendix A.

The risk taxonomy provides a checklist to ensure that all potential risks are considered. Most pro-
jects will not have risks in every area of the risk taxonomy. However, if a program does have a
risk in one of the risk areas, then that risk may cause particular acquisition concerns in the context
of using MDE for automatic code generation. For example, if requirements stability is a program
risk, then in the context of using MDE for automatic code generation, the abilities to operate on
partially complete models and to provide tool support for model refactoring become important.
Also, tool features for stakeholder communication and integration between the code generation
tools and requirements management tools can mitigate some of the impact of this risk. As another
example, if design difficulty is a program risk area, then the ability of the tool to automate simula-
tion or analysis can help mitigate that risk by demonstrating design sufficiency early in the devel-
opment cycle.

To establish selection or evaluation criteria for the MDE automatic code generation tools, the pro-
gram should first scan the risk taxonomy and identify those risk areas that apply to the project.
Each risk creates one or more acquisition concerns, which may refine the program risk or indicate
how certain tool features or capabilities might help mitigate the risk.

Note that there is some repetition in the acquisition concerns columns of the tables in Appendix A
because multiple program risks may create the same acquisition concern. For example, the availa-
bility of training in the capabilities and use of the tool impacts risks areas of development system
familiarity for the initial development team, maintainability, management experience, and cus-
tomer (acquirer) experience.

Finally, the acquisition concerns must be positioned in the specific program context. For example,
continuing the training availability example, there will be a specific need to train X number of

CMU/SEI-2015-TN-005 | 15

people, within Y days of contract award, at a cost of less than Z dollars. As another example, go-
ing back to the previous example of requirements stability risk, there will be a specific need to in-
tegrate the MDE tool with the particular requirements management tool (and version and
platform) that the program will use.

4.3 Collecting the Data

Appendix B contains a questionnaire to be completed by MDE tool vendors, to provide data
needed to make the tool selection decision. We piloted an early version of the questionnaire with
several tool vendors. The version of the questionnaire presented here includes improvements from
that pilot application, along with additional questions suggested by the participating vendors.

The questionnaire structures the data from the vendors about the tools to allow easier analysis and
comparisons.

4.4 Analyzing the Data

The PECA report lists various methods that can be used to consolidate, visualize, and then ana-
lyze the collected data [Comella-Dorda 2004]:

 Consolidation

 All-to-Dollars Technique

 Weighted Aggregation

 Analyzing

 Sensitivity Analysis

 Gap Analysis

 Cost of Fulfillment

The strengths and weaknesses of each approach are described in the PECA report.

We recommend starting with Gap Analysis. Using the risk taxonomy, an acquirer can trace gaps
back to their impact on acquisition concerns and program risk areas. For those gaps that are
deemed significant, the acquirer can extend the Gap Analysis by considering Cost of Fulfillment
and explore the relationships between significant gaps using Sensitivity Analysis. Each technique
is discussed in more detail in the PECA report [Comella-Dorda 2004, Section 5].

4.5 Interpreting Vendor Responses to the Data Collection Questionnaire

This section provides examples of how to interpret vendor responses to the data collection ques-
tionnaire, in the context of a qualitative evaluation such as a Gap Analysis. The responses are
drawn from the actual vendor responses received during the pilot application of the questionnaire.
This discussion does not address every item in the questionnaire but highlights areas where the
pilot application produced interesting and illuminating results.

4.5.1 Questionnaire Part 1 – Demographics

The market for MDE tools is evolving rapidly, and vendor business models and priorities are
changing rapidly. The vendor responses to the questionnaire pilot indicated that some vendors’
business includes providing custom software development services enabled by their code genera-
tion products along with licensing the code generation products as a separate offering. If this is the

CMU/SEI-2015-TN-005 | 16

case, then special attention is needed for responses about customer base, reference customers, and
market share to determine if the response applies to the entire business (development services plus
tool products) or just to the separate tool products.

Responses to questions about initial product release date and product revision history provide in-
sight into the product maturity and feature stability. Generally, consistent support for the ac-
quirer’s target environment and feature set is desirable.

We found the responses to the question asking for a “product overview” to be enlightening. One
vendor indicated that its product was “aimed at the model-driven development of IT systems typi-
cally characterized by being architected in a three-layered fashion (Presentation…Business
Logic…Persistence Layer).” This tool would be a possible candidate for developing or moderniz-
ing a business system but would probably be a poor candidate for a real-time embedded system.
On the other hand, another vendor indicated that its product is a “general purpose environment to
capture software system behavior in a high-level model and generate application code.…The tool
suite has so far been used to generate applications in the telecommunications, automotive, and in-
formation system domains.” While this tool might be used to generate code for a business system,
it seems to provide less domain-specific leverage than the first example. However, this tool might
be a good candidate for developing a real-time embedded system.

4.5.2 Questionnaire Part 2 – Licensing and Delivery

The vendor responses to the questionnaire pilot indicated that the tools are often licensed and de-
livered in two parts: a design client that is installed and executed by each modeler or developer
and a transformation or code generation server. Some vendors offer the server in a software-as-a-
service (SaaS) model, where the vendor hosts the transformation/code generation service and de-
velopers access it over the Internet. Vendors may also offer an on-premises installation of the
server components, which would be necessary to satisfy security classification or concerns about
protecting intellectual property. If the servers will be installed on-premises, then special attention
is needed to identify the prerequisite IT infrastructure and staff skills and training to install and
sustain the server components of the tool.

In assessing answers to questions about the availability of training, pay particular attention to the
assumptions that the vendor makes about the customer’s prerequisite knowledge. Some vendors
may offer comprehensive training in MDE that includes the use of their tools, while other vendors
may offer only more focused training on the specifics of their tools. For example, one vendor as-
sumes “a basic familiarity with computer science,” a prerequisite that most developers might meet
but that other stakeholders, who will need to use parts of the tool to certify or evaluate the design,
might not.

Questions in Part 2 also address the target runtime environment. One vendor responded that its
tool generates code that assumes a “POSIX compliant operating system,” with customizations
available for many other operating systems. If the target environment is not POSIX compliant,
which is likely, then the acquirer must pay special attention to the customizations needed to exe-
cute in the desired target environment: what is the complexity of the customization, who main-
tains the customization, and how will the customization be sustained over the lifetime of the
system? The answers to these additional questions may or may not indicate program risks.

CMU/SEI-2015-TN-005 | 17

Another vendor response to this question indicated that its tool generates “generic source code for
a complex application on a variety of platforms/stacks.” In this case, a later response in Part 4 pro-
vided a complete enumeration of the supported operating systems.

4.5.3 Questionnaire Part 3 – Modeling

Vendor responses about model representation may highlight their use of the UML standard. Ac-
quirers in a program using an MDE approach must recognize that out-of-the-box UML does not
have the semantic precision needed to perform automatic code generation. A UML profile (a well-
defined set of extensions to the core UML standard) is needed to close the semantic variation
points and ambiguities. Vendors should report that they support a standard profile (e.g., Recom-
mendation ITU-T Z.109, which is a profile that focuses on distributed systems) or have defined a
proprietary profile. Responses claiming to generate code from “standard UML” require further ex-
planation, which will probably uncover the implicit use of a proprietary profile.

Another important issue in model representation is the availability of both graphical and textual
representations. Purely graphical representations have scalability limitations—there are limits to
how many elements can be legibly represented on a single page or screen, and while form-based
data entry can accelerate initial model creation, it can be cumbersome for maintenance of the
model. In contrast, it can be more difficult to see the big picture using a textual representation, but
availability of operations such as pattern-matching search and replace can make model mainte-
nance more efficient. Generally, easy and interchangeable use of both types of representation is
desirable.

Model export is important for interoperability with other tools, such as tools for model analysis or
tools used by certification authorities, and to create artifacts needed by stakeholders for activities
like design reviews. All of the vendors in our pilot supported export of an Extensible Markup
Language (XML) representation of the model. The XML Metadata Interchange (XMI) is an OMG
standard for representing UML models in XML, and vendors frequently mentioned it in responses
on the questionnaire. If stakeholder communication is important, then other export formats such
as Microsoft® Word–compatible .doc files or PDF files are desirable, and we found that not all
vendors reported that they supported these formats. Part 3 of the questionnaire also addresses the
creation of documentation artifacts for stakeholder communication—there is some overlap be-
tween “export” and “documentation”—but some vendors consider them distinct capabilities, so
the questions are separate but the responses should be viewed together. In both cases, note that the
export and documentation features may be add-on features that must be acquired separately from
the base tool.

Part 3 of the questionnaire also addresses tool capabilities for model simulation or execution. De-
pending on the size and type of system being developed, it may be desirable to simulate or exe-
cute the model directly to assess requirements interpretation and sufficiency or to demonstrate
design feasibility. Not all vendors in our pilot supported this capability, so if it is needed, re-
sponses in this part of the questionnaire will provide insight into the fidelity of the model execu-
tion and specific features for debugging. On the other hand, if the system and target environment
are conducive to rapid installation and configuration, then generation and deployment of the ac-
tual system may be an effective approach, so a lack of capability in this area may not represent an
important gap for the tool.

CMU/SEI-2015-TN-005 | 18

Some MDE tools provide a capability to generate tests that can be executed on the model, the
generated code, or both. For example, one of the vendors in our pilot responded that its tool sup-
ports generating test suites (including branch coverage) from developer-created UML use case
maps. The tool can execute the test suite on the model, or it can generate test code to execute the
test suite on the generated code. An acquirer should evaluate such a response to ensure that the
generated test code is compatible with any limitations in the target environment (e.g., is an inter-
active console interface required?). An alternative to automatically generated test suites is to lev-
erage the tool capabilities to create additional model elements to drive and execute developer-
defined tests. This approach requires more work for test design but may be the only approach
compatible with target environment constraints.

Support for “round-trip engineering” was a hot-button issue in our pilot. Round-trip engineering is
a capability that allows manual changes to the generated code to be reflected back into the model.
All vendors in our pilot took the position that the model is the primary artifact: The generated
code should not be manually changed, and any changes to the generated code are not reflected
back into the model by their tools.

All of the vendors reported that they support using a typical revision control system or software
configuration management system to allow multiple developers to work on the model concur-
rently. If the project has a specific requirement for a software configuration management (SCM)
tool, the acquirer should review compatibility with the tool vendor. A model may comprise multi-
ple files, which may be tightly coupled. Although an SCM system allows independent versioning
of coupled files, this independence may cause problems in the tool if the contents of the multiple
files are not consistent. One vendor reported having a repository capability built into the tool,
which provides versioning and access control at the system and model levels, not at the file level.

The ability to create reusable templates for parts of a model is an advanced tool feature but is par-
ticularly desirable for creating larger systems and for governing the design of larger systems. Only
one of the vendors provided this capability. If this feature is not available in the tool, the develop-
ment team can work around this with additional processes.

Finally, the questionnaire asks the vendors to report typical developer productivity when using
their tools to construct systems. Responses ranged from 2–10× improvement to 25× improvement,
compared to traditional development approaches. Acquirers using this questionnaire to screen
vendors might want to reword this question to reflect the type of system being built by the pro-
gram and any relevant constraints. The vendor’s response to this question is just a starting point
for assessing development costs—code generation is only one of many software engineering ac-
tivities.

4.5.4 Questionnaire Part 4 – Target Environment

The first questions in Part 4 focus on the transformation approach: Tools may generate source
code ready to be compiled, packaged, and deployed into any suitable environment; however,
some tools generate code for deployment only into a specific environment. All of the vendors in
our pilot fell into the first category, but in our survey of the market, we found at least one example
of vendor-produced code that could be executed only in that vendor’s platform-as-a-service
(PaaS) cloud.

CMU/SEI-2015-TN-005 | 19

For tools that generate source code, the target languages must be compatible with the rest of the
system and tools. The supported languages are usually aligned with the tool’s intended application
domain. For example, one vendor responded that its tool, intended to create business system ap-
plications, supported only C# and Java, which are typical for that type of system. Another vendor,
whose tool is intended to generate embedded and distributed software applications, supports C,
C++, Java, and C#. If a tool does not generate source code in a language needed for the acquirer’s
system, that may indicate that the tool’s intended use is not in the appropriate application domain.

If the acquirer’s system will run in an enterprise application framework, such as Java Enterprise
Edition (JEE) or a particular cloud environment, then automatic generation of additional deploy-
ment artifacts is desirable. For example, one vendor responded that its tool can target specific JEE
application servers such as WebSphere and Weblogic as well as cloud environments such as Mi-
crosoft Azure and Amazon Web Services®.

Finally, while the generated code has dependencies on specific operating systems and databases,
most of the vendors responded that their generated codes will run on a broad set of commonly
used platforms. In evaluating responses to this question, carefully assess the exact products and
versions supported by the tool vendor for alignment with your system architecture and evolution
plans. Also, it may be helpful to review the vendor’s release history (in Part 1 of the question-
naire) to assess how its tool support has tracked the updates to particular operating systems and
databases of interest to the program.

CMU/SEI-2015-TN-005 | 20

5 Conclusions

While MDE promises to improve the efficiency of developing, delivering, and sustaining soft-
ware, these benefits come with some challenges. An acquirer must select an MDE process appro-
priate to its system requirements, domain characteristics, and stakeholders’ needs. This process
may involve working to change an organizational culture used to focusing on code rather than
models. In addition, the acquirer must evaluate contractors’ and developers’ selection of the ap-
propriate tool set to implement the development, integration, and testing of the MDE solution.
The acquirer may also need to work with certifiers accustomed to evaluating different types of ar-
tifacts than those produced in an MDE acquisition. And significantly, acquirers must address sus-
tainment concerns from the beginning of the acquisition process.

Guided by the criteria for evaluating tools in Appendix A, an acquiring organization can use the
vendor self-assessment questionnaire in Appendix B to collect information about a vendor’s de-
mographics and approaches to licensing and delivery of products and services, modeling represen-
tations, and transitioning products and services to the program’s target environment. Together,
they will help an organization evaluate risks in product engineering, the development environ-
ment, and program constraints, ensuring that potential risks across all relevant acquisition strategy
concerns are covered.

Further research is needed on the benefits and risks of using MDE approaches for developing and
acquiring software. Additional areas of investigation include fully mapping the acquisition strat-
egy to areas and questions that are relevant to using an MDE methodology, using domain-specific
languages as opposed to the standards-based UML, integrating multiple models, measuring the
economics of MDE, and using MDE to achieve correctness by construction.

CMU/SEI-2015-TN-005 | 21

Appendix A Tool Evaluation Criteria

The tables in this appendix list all of the risk areas in our risk taxonomy [Carr 1993]. Table 1
shows the risk areas related to product engineering, which include requirements, design, code and
unit test, and specialty engineering concerns. Table 2 shows the risk areas related to the develop-
ment environment, which include development and management tools and processes. Finally, Ta-
ble 3 shows risk areas related to the program constraints, including resources, contract constraints,
and interfaces with related programs.

As noted in Section 4, this risk taxonomy provides a checklist to ensure that an acquirer considers
all possibly relevant issues. Most programs will not have concerns in every risk area; however, if
a program has concerns in a particular risk area, then the tables provide guidance on how those
risks impact acquisition concerns in the context of using MDE tools for automatic code genera-
tion.

A few detailed risk areas in the taxonomy (for example, “Management Experience”) have no di-
rect relationship to the MDE tool, and these are marked “Not applicable.”

The rightmost column of each table provides cross-references to the questions in the vendor ques-
tionnaire that relate to the acquisition concerns. The full questionnaire is provided in Appendix B.

Table 1: Evaluation Criteria – Product Engineering Risk Area

Risk Area Potential Acquisition Concerns Related to MDE
Tools for Automatic Code Generation

Questionnaire Reference

Requirements

Stability Responding to requirements changes may necessitate
operating on partially complete models and performing
refactoring or rework on models.

Communication with stakeholders is particularly im-
portant to resolve requirements issues, so tool features
that support this become more important.

Interfaces between the software modeling tools and the
requirements management tools promote co-evolution of
requirements and software.

3.3.4

3.5.2, 3.5.2.1

3.5.1

Completeness In addition to the concerns noted above about require-
ments stability, the ability to execute or simulate execu-
tion of the model can help validate requirements
completeness.

3.2.1.1, 3.2.1.2, 3.2.1.3, 3.2.1.4,
3.2.1.5, 3.2.1.6, 3.4.1, 3.4.2.1

Clarity The ability to execute or simulate execution of the model
can help validate interpretation of requirements.

Stakeholder communication features also help with vali-
dating interpretation of requirements.

3.2.1.1, 3.2.1.2, 3.2.1.3, 3.2.1.4,
3.2.1.5, 3.2.1.6, 3.4.1, 3.4.2.1

3.5.1, 3.5.2, 3.5.2.1

Validity The ability to execute or simulate execution of the model
can help validate correctness and necessity of require-
ments.

3.2.1.1, 3.2.1.2, 3.2.1.3, 3.2.1.4,
3.2.1.5, 3.2.1.6, 3.4.1, 3.4.2.1

Feasibility The ability to execute or simulate execution of the model
can help demonstrate feasibility of requirements.

The ability to perform analysis of the model for qualities
such as latency, throughput, and consistency can help
demonstrate feasibility of requirements.

3.2.1.1, 3.2.1.2, 3.2.1.3, 3.2.1.4,
3.2.1.5, 3.2.1.6

3.4.1, 3.4.2.1

CMU/SEI-2015-TN-005 | 22

Risk Area Potential Acquisition Concerns Related to MDE
Tools for Automatic Code Generation

Questionnaire Reference

Precedent References from other customers who have used the
tool to create systems with similar characteristics to this
system (e.g., size, complexity, specific capabilities, tar-
get platforms, an performance) demonstrate the suitabil-
ity of the tool for this system.

1.1.5.2, 1.1.5.3

Scale Limitations on the size or complexity of the model that
can be represented, analyzed, or transformed by the
tool will limit the scale of the system that can be created.

The ability to support parallel model development and
code generation by multiple teams is usually necessary
to create large, complex systems.

The ability to incrementally develop models for parts of
the system and compose those parts into larger models
is usually necessary to create large, complex systems.

3.1.4

3.3.2.1, 3.3.2.2

3.3.4

Design

Functionality The ability to execute or simulate execution of the model
can help demonstrate correctness of functionality.

3.2.1.1, 3.2.1.2, 3.2.1.3, 3.2.1.4,
3.2.1.5, 3.2.1.6, 3.4.1, 3.4.2.1

Difficulty The ability to execute or simulate execution of the model
can help demonstrate design sufficiency.

The ability to perform analysis of the model for qualities
such as latency, throughput, and consistency can help
demonstrate design sufficiency.

3.2.1.1, 3.2.1.2, 3.2.1.3, 3.2.1.4,
3.2.1.5, 3.2.1.6

3.4.1, 3.4.2.1

Interfaces The ability to execute or simulate execution of the model
can help demonstrate correctness of external system in-
terfaces.

If only parts of the system will be automatically gener-
ated, while other parts will be developed using traditional
approaches, the interfaces between these two types of
software must be designed and developed.

3.2.1.1, 3.2.1.2, 3.2.1.3, 3.2.1.4,
3.2.1.5, 3.2.1.6, 3.4.1, 3.4.2.1

3.5.2.2, 4.1, 4.1.1, 4.1.2, 4.2,
4.3

Performance The ability to perform analysis on the model for perfor-
mance qualities such as latency and throughput can
help demonstrate design sufficiency.

3.2.1.1, 3.2.1.2, 3.2.1.3, 3.2.1.4,
3.2.1.5, 3.2.1.6, 3.4.1, 3.4.2.1

Testability The tool should generate code that exposes internal
states and interfaces needed to test the generated soft-
ware.

3.2.1.1, 3.2.1.2, 3.2.1.3, 3.2.1.4,
3.2.1.5, 3.2.1.6, 3.3.1, 3.3.1.1,
3.5.2.2, 4.1, 4.1.1, 4.1.2, 4.1.3,
4.2, 4.3

Hardware constraints The tool must be able to generate code that will execute
in the current and any anticipated target environment.

The generated code must be sufficiently efficient (in
terms of processor, memory, network, disk, and other
resource utilization) to operate in the target environment.

4.1, 4.1.1, 4.1.2, 4.1.3, 4.2, 4.3

Non-developmental
software

Any runtime packages, libraries, or other software re-
quired to execute the generated code must be known,
compatible with the current and future target environ-
ments, and able to be certified for use in those environ-
ments (e.g., information assurance, weapons safety,
and flightworthiness)

2.2.1, 4.2, 4.3

Code and Unit Test

Feasibility The ability to execute or simulate execution of the model
can help validate feasibility of the generated code.

If only parts of the system will be automatically gener-
ated, while other parts will be developed using traditional
approaches, then analysis to determine feasibility of the
interface is needed.

3.2.1.1, 3.2.1.2, 3.2.1.3, 3.2.1.4,
3.2.1.5, 3.2.1.6, 3.4.1, 3.4.2.1

3.5.2.2, 4.1, 4.1.1, 4.1.2, 4.2,
4.3

CMU/SEI-2015-TN-005 | 23

Risk Area Potential Acquisition Concerns Related to MDE
Tools for Automatic Code Generation

Questionnaire Reference

Testing The tool should generate code that exposes internal
states and interfaces needed to test the generated soft-
ware.

3.2.1.1, 3.2.1.2, 3.2.1.3, 3.2.1.4,
3.2.1.5, 3.2.1.6, 3.3.1, 3.3.1.1,
3.5.2.2, 4.1, 4.1.1, 4.1.2, 4.1.3,
4.2, 4.3

Coding and
implementation

The tool must be able to generate code that will execute
in the current and any anticipated target environment.

The generated code must be sufficiently efficient (in
terms of processor, memory, network, disk, and other
resource utilization) to operate in the target environment.

4.1, 4.1.1, 4.1.2, 4.1.3, 4.2, 4.3

Integration and Test

Environment The generated code may have runtime dependencies on
third-party software or software provided by the tool ven-
dor. This software must be compatible with the integra-
tion environment.

The code generated by the tool must expose interfaces
using technology bindings (e.g., languages, protocols,
and standards) that are compatible with the integration
environment.

2.2.1, 4.3

3.2.1.1, 3.2.1.2, 3.2.1.3, 3.2.1.4,
3.2.1.5, 3.2.1.6, 3.3.1, 3.3.1.1,
3.5.2.2, 4.1, 4.1.1, 4.1.2, 4.1.3,
4.2, 4.3

Product The tool should generate code that exposes internal
states and interfaces needed to test the generated soft-
ware.

3.2.2, 3.3.1, 3.3.1.1, 3.5.2.2,
4.1, 4.1.1, 4.1.2, 4.1.3, 4.2, 4.3

System The tool should generate code that exposes internal
states and interfaces needed to test the generated soft-
ware.

3.2.1.1, 3.2.1.2, 3.2.1.3, 3.2.1.4,
3.2.1.5, 3.2.1.6, 3.3.1, 3.3.1.1,
3.5.2.2, 4.1, 4.1.1, 4.1.2, 4.1.3,
4.2, 4.3

Engineering Specialties

Maintainability Data rights must be acquired for the models, tools, and
other technology needed to operate on the model and
generate code.

Training and support must be available to enable the
sustainment organization to gain the knowledge and
skills needed to sustain the software.

2.1.1, 2.1.2, 2.3.2

2.3.1, 2.3.1.1, 2.3.3, 2.3.4

Reliability The generated code must be correct and robust.

Any runtime packages, libraries, or other software re-
quired to execute the generated code must be correct
and robust.

4.1

2.2.1, 4.3

Safety The generated code—along with any runtime packages,
libraries, or other software required to execute the gen-
erated code—should be compatible with safety certifica-
tion tools and processes.

3.3.1, 3.3.1.1, 3.5.1, 3.5.2,
3.5.2.1, 3.5.2.2, 4.1, 4.1.1,
4.1.2, 4.1.3, 4.2, 4.3

Security The generated code—along with any runtime packages,
libraries, or other software required to execute the gen-
erated code—should be compatible with security certifi-
cation tools and processes.

3.3.1, 3.3.1.1, 3.5.1, 3.5.2,
3.5.2.1, 3.5.2.2, 4.1, 4.1.1,
4.1.2, 4.1.3, 4.2, 4.3

Human factors If the generated software includes generated user inter-
faces, these must be assessed for usability.

Specifications The ability to execute or simulate execution of the model
can help validate feasibility and interpretation of the
specifications.

Stakeholder communication features also help with vali-
dating interpretation of specification.

3.2.1.1, 3.2.1.2, 3.2.1.3, 3.2.1.4,
3.2.1.5, 3.2.1.6, 3.4.1, 3.4.2.1

3.5.1, 3.5.2, 3.5.2.1

CMU/SEI-2015-TN-005 | 24

Table 2: Evaluation Criteria – Development Environment Risk Area

Risk Area Potential Acquisition Concerns Related to MDE
Tools for Automatic Code Generation

Questionnaire Reference

Development Process

Formality Not applicable

Suitability As noted earlier, there is a tight coupling between the
selected development process and the MDE tools used
to support that process. Many tools are more or less
compatible with particular development processes. To
some extent, all of these evaluation criteria are related
to this taxonomy topic.

References from other customers who have used the
tool to create and sustain systems using a similar devel-
opment process can demonstrate the suitability of the
tool.

1.1.5.2, 1.1.5.3

Process control The tool must provide mechanisms for maintaining con-
sistency of modeling, analysis, and generation at the
scale required to develop and sustain the system (e.g.,
multiple teams, multiple connected sites, and multiple
contractors).

3.3.2.1, 3.3.3.2

Familiarity Not applicable (this refers to the familiarity of the devel-
opment and sustainment teams with the processes; tool
familiarity is addressed below).

Product control An update to the tool may necessitate repeating model
analyses, repeating code generation, and repeating test,
integration, and certification. Tools that are rapidly evolv-
ing may put a strain on the development process.

If the tool is delivered as a service, then configuration
control of the tool is provided by the vendor.

1.1.1, 1.1.3.1, 1.1.3.2, 1.1.4.1,
1.1.4.2

2.1.1, 2.1.2

Development System

Capacity The tool’s modeling, analysis, and code generation envi-
ronment will require the development and sustainment
organizations to deploy particular platforms and prereq-
uisite software.

2.1.3

Suitability The tool’s modeling, analysis, and code generation envi-
ronment must be compatible with security and other
standards of the development and sustainment organi-
zation.

2.1.3

Usability References from other customers who have used the
tool to create systems with similar characteristics to this
system (e.g., size, complexity, specific capabilities, tar-
get platforms, and performance) demonstrate the usabil-
ity of the tool for this system.

Integration of the tool with upstream (e.g., requirements
management) and downstream (e.g., integration or certi-
fication) tooling improves usability.

1.1.5.2, 1.1.5.3

Familiarity If the development and sustainment teams are not famil-
iar with the tool, training and support must be available
to enable the organizations to gain the knowledge and
skills needed to develop and sustain the software.

2.3.1, 2.3.1.1, 2.3.3, 2.3.4

Reliability The tool should be mature and stable, as demonstrated
by a tool release stream that maintains continuity of fea-
tures while adding incremental enhancements and com-
patibility with underlying platform changes.

1.1.1, 1.1.3.1, 1.1.3.2, 1.1.4.1,
1.1.4.2

System support If the vendor cannot provide support for the tool over the
life of the system, then the model will have to be mi-
grated to a new tool. This decomposes into two issues:
the vendor’s long-term corporate health and the ven-
dor’s continued support for the tool product.

1.1.1, 1.1.3.1, 1.1.3.2, 1.1.4.1,
1.1.4.2, 1.1.5.1, 1.1.5.2, 1.1.5.3,
1.1.5.4, 1.2.4, 1.2.5.1, 1.2.5.2

CMU/SEI-2015-TN-005 | 25

Risk Area Potential Acquisition Concerns Related to MDE
Tools for Automatic Code Generation

Questionnaire Reference

Deliverability The modeling, analysis, and code generation tool must
be available for the life of the system, or the program will
have to migrate the model to different tooling.

Any customization or configuration of the tools must be
included in the delivery.

1.1.1, 1.1.3.1, 1.1.3.2, 1.1.4.1,
1.1.4.2, 1.1.5.1, 1.1.5.2, 1.1.5.3,
1.1.5.4, 1.2.4, 1.2.5.1, 1.2.5.2

3.3.6

Management Process

Planning Integration of the MDE tools with project management
tools and dashboards is desirable.

3.5.2

Project organization If the tool requires particular project staff resources to
operate or manage the environment, then these should
be reflected in the project organization.

2.1.3

Management
experience

If the development and sustainment teams’ managers
are not familiar with the tool and its use, training and
support must be available to enable the organizations to
gain the knowledge and skills needed to develop and
sustain the software.

2.3.1, 2.3.1.1, 2.3.3, 2.3.4

Program interfaces Integration of the MDE tools with project management
tools and dashboards is desirable.

3.5.2

Management Methods

Monitoring Integration of the MDE tools with project management
tools and dashboards is desirable.

Personnel
management

Certification or other formal demonstration of proficiency
in the use of the tool may be part of the development
and sustainment organizations’ personnel management
practices.

2.3.1, 2.3.1.1, 2.3.3, 2.3.4

Quality assurance Several issues arise in planning and executing architec-
ture and design reviews:

If the generated code requires any runtime packages, li-
braries, or other software to execute, this additional soft-
ware must be included in the review scope.

Reviewers must have appropriate access to the models.
While the tool may support export to a format such as
PDF documents, this format may not be usable by re-
viewers. Interactive viewing and navigation of the model
may be needed.

2.2.1, 4.3

3.5.1, 3.5.2, 3.5.2.1

Configuration
management

The tool must provide mechanisms for maintaining con-
sistency of modeling, analysis, and generation at the
scale required to develop and sustain the system (e.g.,
multiple teams, multiple connected sites, and multiple
contractors).

3.3.2.1, 3.3.3.2

Work Environment

Quality attitude Not applicable

Cooperation Not applicable

Communication Not applicable

Morale Not applicable

CMU/SEI-2015-TN-005 | 26

Table 3: Evaluation Criteria – Program Constraints Risk Area

Risk Area Potential Acquisition Concerns Related to MDE
Tools for Automatic Code Generation

Questionnaire Reference

Resources

Schedule Developer productivity is measured differently when
using automatic code generation approaches.

3.3.5

Staff If the development and sustainment teams are not fa-
miliar with the tool, training and support must be
available to enable the organizations to gain the
knowledge and skills needed to develop and sustain
the software.

2.3.1, 2.3.1.1, 2.3.3, 2.3.4

Budget The tool, including any optional features (e.g., import,
export and integration with other tools), along with the
environment to execute the tool, must be acquired.

If the generated code requires any runtime packages,
libraries, or other software to execute, this additional
software must be acquired and sustained.

Developer productivity is measured differently when
using automatic code generation approaches.

2.1.1, 2.1.1.1, 2.1.2

2.2.1, 2.2.1.1, 4.3

3.3.5

Facilities The tool and the generated software must execute
within any facilities constraints of the program (e.g.,
classified enclaves).

2.1.3, 4.1, 4.1.1, 4.1.2, 4.1.3, 4.2,
4.3

Contract

Type of contract Not applicable

Restrictions MDE tools that generate code become part of the
software supply chain.

If the generated code requires any runtime packages,
libraries, or other software to execute, this additional
software becomes part of the software supply chain.

2.2.1, 4.3

Dependencies The use of MDE tools for generating code creates a
dependency on the tools themselves.

Program Interfaces

Customer If the acquiring team is not familiar with the tool and
with MDE development practices, training and sup-
port must be available to enable the organizations to
gain the knowledge and skills needed to successfully
acquire and sustain the software.

2.3.1, 2.3.1.1, 2.3.3, 2.3.4

Associate
contractors

The tool must provide mechanisms for maintaining
consistency of modeling, analysis, and generation at
the scale required to develop and sustain the system
(e.g., multiple teams, multiple connected sites, and
multiple contractors).

Stakeholders must have appropriate access to the
models. While the tool may support export to a format
such as PDF documents, this format may not be usa-
ble by stakeholders. Interactive viewing and naviga-
tion of the model may be needed.

If some parts of the system are created using MDE
and others using traditional methods, then specifica-
tion of data rights and deliverables for each type of
software complicates the acquisition, but this is not
directly a tool concern.

3.3.2.1, 3.3.3.2

3.5.1, 3.5.2, 3.5.2.1

CMU/SEI-2015-TN-005 | 27

Risk Area Potential Acquisition Concerns Related to MDE
Tools for Automatic Code Generation

Questionnaire Reference

Subcontractors The tool must provide mechanisms for maintaining
consistency of modeling, analysis, and generation at
the scale required to develop and sustain the system
(e.g., multiple teams, multiple connected sites, and
multiple contractors).

Stakeholders must have appropriate access to the
models. While the tool may support export to a format
such as PDF documents, this format may not be usa-
ble by stakeholders. Interactive viewing and naviga-
tion of the model may be needed.

If some parts of the system are created using MDE
and others using traditional methods, then specifica-
tion of data rights and deliverables for each type of
software complicates the acquisition, but this is not
directly a tool concern.

3.3.2.1, 3.3.3.2

3.5.1, 3.5.2, 3.5.2.1

Prime
contractor

If some parts of the system are created using MDE
and others using traditional methods, then specifica-
tion of data rights and deliverables for each type of
software complicates the acquisition, but this is not
directly a tool concern.

Corporate
management

Not applicable

Vendors All of these concerns pertain to managing vendor risk
related to the MDE tool vendor.

Politics Not applicable

CMU/SEI-2015-TN-005 | 28

Appendix B MDE Tool Vendor Self-Assessment Instrument

Table 4 contains the questionnaire used to collect information about a particular MDE automatic
code generation tool. This questionnaire was used for the pilot data collection discussed in Sec-
tions 4.3, 4.4, and 4.5. We have also included additional questions suggested by the participating
vendors and added after the initial pilot.

CMU/SEI-2015-TN-005 | 29

Table 4: Self-Assessment Instrument for MDE Tools

Ques-
tion
Num-
ber

Section Subsection Question Ti-
tle

Subquestion
Title

Question

1.1.1 De-
mographics

Product
Identifica-
tion

Product
Name

 What is the name of the product, suite, or tool set?

1.1.2 Product-Spe-
cific Website
URL

 Link to the web page that describes the product.

1.1.3.1 Current Ver-
sion

Release Date When was this version released?

1.1.3.2 Patch Level What is the current minor version and patch level? When was it released? If possible, provide a
link to the Release Notes describing the update.

1.1.4.1 Original Ver-
sion

Release Date When was the initial version of the product released?

1.1.4.2 Revision History Please provide a brief history of the evolution of the product, from the initial version through the
current version. Identify the major features or capabilities that were added or removed in each
version.

1.1.5.1 Installed Base
of Customers

Number How many customers (organizations and end users) are using your product?

1.1.5.2 List of Selected
Customer
Organizations

Identify (if possible) customers using the product or systems that have been built using the prod-
uct.

1.1.5.3 List of Customer
References

Identify (if possible) customers that can provide references for the product.

1.1.5.4 Market Share How would you characterize your product’s market share?

1.2.1 Company
Information

U.S. Cus-
tomer
Address

 Company address

1.2.2 Company
Website URL

 Company URL

1.2.3 Point of Con-
tact for MDE
Tool Product

 If we have further questions, whom should we contact? (Name, title, phone number, and email
address)

1.2.4 Company His-
tory

 How long have you been developing MDE tools? What products have you delivered, and how
have they changed over time? What experience does your senior technical staff have in produc-
ing MDE tools? What software engineering processes do you use for developing your products?

CMU/SEI-2015-TN-005 | 30

Ques-
tion
Num-
ber

Section Subsection Question Ti-
tle

Subquestion
Title

Question

1.2.5.1 Company Fi-
nancials

Overall Financial
Metrics

Provide or point to your overall company financial results for the past 3 years. What financial re-
sults are you projecting for the next year?

1.2.5.2 Percentage of
Gross Revenue De-
rived from MDE
Sales

How does this MDE tool fit into your overall financial picture? What portion of your total revenue
is due to this product? Please provide or point to this information for the past 3 years and for the
next year.

1.3 Product
Overview

 How do you characterize your tool? Is it a general-purpose tool that can be used to create al-
most any type of system, from real-time embedded systems to enterprise business systems?
Do you target a specific category of system or application (“domain-specific”)? Or do you pro-
vide a metamodeling framework for creating domain-specific languages (DSLs)?

2.1.1 Licensing and
Delivery

Develop-
ment Tool

License What type of license do you offer? Is there an open source version of the product? How is that
licensed?

2.1.1.1 Commercial
Pricing

What is your pricing model for commercial offerings? Enterprise license? Node-locked? User-
locked? Floating license?

2.1.2 Delivery
Model

 How is the product delivered? Is the development tool installed on-premises by the customer? Is
the development tool delivered in a SaaS? Do you (or a partner) provide development services
and use the tool to accelerate your team’s work?

 Prerequisite
Software

 What prerequisite software (operating system, database, etc.) is required for the tool installation
and execution?

2.2.1 Runtime
Compo-
nent(s)

Required What is the target runtime environment for the generated code? Operating system? Virtual ma-
chine (VM)? Library (third party/open source/provided by you)? Other required software?

2.2.2 License If you provide any runtime software, how is that licensed? Free/open source?

2.2.2.1 Commercial
Pricing

What is the commercial pricing model for the runtime software? Enterprise? Per instance?
Other?

2.2.3 Delivery
Model

 How is the generated software executed? Does the customer load it into the target environ-
ment? If so, how do you deliver any necessary libraries or other runtime packages (e.g., media
or download)? Do you (or a partner) provide an off-premises execution environment (infrastruc-
ture as a service [IaaS] or PaaS)?

2.3.1 Support Technical
Support

 What levels of technical support are available for the development tool and for the runtime soft-
ware? Is there a service-level agreement (SLA) for support? Where is the support staff located?

2.3.1.1 Cost What is the cost for technical support?

2.3.2 What is your model for providing updates?

CMU/SEI-2015-TN-005 | 31

Ques-
tion
Num-
ber

Section Subsection Question Ti-
tle

Subquestion
Title

Question

2.3.2.1 Software
Maintenance
and Updates

Cost What is the cost for a maintenance and update plan?

2.3.3 Training –
Availability

 What training is available for your product? Please identify who delivers the training—your com-
pany, licensed partners, or other source—and identify approximate costs. Identify training for
individuals (online tutorials, books), formal training (online or in-person courses), and coaching,
mentoring, or consulting.

2.3.4 Training –
Recommen-
dations

 What prerequisite experience do you recommend for users (e.g., technologies, methodologies,
projects, or languages)? What is the minimal product-specific training that you recommend for a
user to be competent in using the product?

3.1 Modeling These questions deal with how models are represented in your product.

3.1.1.1 Representa-
tion

Structural Object Oriented What object-oriented models are available in your product, such as class diagrams and compo-
nent diagrams?

3.1.2 Behavioral What behavioral models are available in your product, such as state machines, sequence dia-
grams, activity diagrams, or action languages?

3.1.3.1 UML 2.0 MDA Support Does your tool support OMG MDA constructs such as platform-independent models (PIMs) and
platform-specific models (PSMs)?

3.1.3.2 Extensions What UML extensions do you support? Do you use domain-specific profiles?

3.1.4 Limitations What are the size and complexity limitations for representing models using your tools?

3.1.5.1 Format Internal What format is used for internal (native) model representations?

3.1.5.2 Export What export formats are supported (XMI, PDF, etc.)?

3.1.5.3 Import What import formats are supported (XMI, etc.)? Are there limitations on what can be imported?

3.2 Testing Please answer the questions in this section if your product supports model execution.

3.2.1.1 Model Execu-
tion and De-
bug Support

Diagram Animation How is the model execution visualized?

3.2.1.2 Breakpoints Can a developer set breakpoints to stop execution? How are breakpoints specified?

3.2.1.3 Execution Tracing Can a developer trace the flow of execution through the model? How is this presented?

3.2.1.4 Event/Data Injection Can a developer inject data or events into the model? How is this accomplished?

3.2.1.5 Value Display Can a developer monitor and display values of variables and data structures during model exe-
cution? How is this accomplished?

3.2.1.6 Concurrency How is concurrency represented during model execution?

CMU/SEI-2015-TN-005 | 32

Ques-
tion
Num-
ber

Section Subsection Question Ti-
tle

Subquestion
Title

Question

3.3.1 Workflow Round-Trip
Support

 Does your product support “round-trip” development? That is, are changes to the generated
code or other generated artifacts automatically reflected in the model?

3.3.1.1 Code Tagging Gran-
ularity

Tools that generate code often mark or “tag” sections of the code as generated and controlled
by the tool, and other sections outside the tags are editable directly by the developer. Does your
product do this? If so, what is the typical scope of the tagged code?

3.3.2.1 Collaboration
Support

Teams What support does your product provide for multiple developers operating on the model?

3.3.3.1 Model Reuse Discovery of Model
from Code

Can your product create a model from existing source code? Describe the process and any limi-
tations.

3.3.3.2 User-Defined
Design Pattern

Can users of your product define reusable design patterns or templates and then instantiate
these into their models? Describe the process and any limitations.

3.3.4 Model Refac-
toring

 Does your product support “refactoring” (incrementally modifying structure or behavior, usually
by splitting or combining model elements)? Describe the processes for refactoring structure
(e.g., classes) and behavior (e.g., method splitting). Does your product support operating on a
model that is partially completed, for example, a model that has empty placeholders or “skele-
tons” stubbed in for certain elements?

3.3.5 Developer
Productivity

 Can you characterize typical developer productivity using your product? Do you have metrics
from completed projects?

3.3.6 Tool
Configura-
tion

 How does the tool persist configuration (config file, registry, database, etc.)? Can full configura-
tion be exported and imported?

3.4.1 Analysis of
the Model

Static Analy-
sis

 Does your product support static analysis, such as dependency or complexity analysis? De-
scribe the process and limitations. Does your product produce artifacts useful for specialized
analysis such as safety or cybersecurity?

3.4.2.1 Dynamic
Analysis

Performance Does your product support analysis of throughput, latency, or other performance qualities? De-
scribe the process and limitations.

3.5.1 Documenta-
tion

Requirements
Tracing

 Does your product support tracing requirements into model elements? Describe the process
and limitations.

3.5.2 Stakeholder
Communica-
tions

 Does your product produce any artifacts focused on communicating with stakeholders, including
reports that might be of interest to a project manager? Describe the process and limitations.

3.5.2.1 Model
Documentation

How does your product document the model? Where in the model can documentation such as
design rationale be attached? What documents can be automatically generated from the
model?

CMU/SEI-2015-TN-005 | 33

Ques-
tion
Num-
ber

Section Subsection Question Ti-
tle

Subquestion
Title

Question

3.5.2.2 Within Generated
Code

How is the generated code documented?

4.1 Target
Environment

Transfor-
mation Ap-
proach

 What executable artifacts does your product generate? Do you generate source code that must
be compiled? Do you directly generate object code or byte code? Do you generate other arti-
facts necessary for deployment to an environment such as an application server or enterprise
application framework?

4.1.1 To Code If your product generates source code, which languages and compilers are supported?

4.1.2 To Enterprise
Application
Framework

 If your product generates artifacts for deployment to an enterprise application framework, what
target frameworks are supported? Which languages or other bindings (e.g., XML or YAML) are
supported?

4.1.3 To VM If your product generates an executable virtual machine, which formats and hypervisors are
supported?

4.2 Target Plat-
forms Sup-
ported

 If the generated code depends on particular target platforms, please identify the operating sys-
tem, database, application server, hypervisor, etc.

4.3 Runtime
Software
Required

 Please identify all target environment software that the user must provide, such as operating
system, application framework, JVM, libraries, or other packages.

CMU/SEI-2015-TN-005 | 34

References

URLs are valid as of the publication date of this document.

[Bergey 2013]
Bergey, John & Jones, Larry. “Architecture-Centric Procurement.” Presented at the SEI Architec-
ture Technology User Network (SATURN) Conference. Minneapolis, MN, Apr. 2013. http://re-
sources.sei.cmu.edu/library/asset-view.cfm?assetid=48061

[Brambilla 2012a]
Brambilla, Marco. Model-Driven Software Engineering in Practice - Chapter 1 - Introduction.
Morgan & Claypool, 2012. http://www.slideshare.net/mbrambil/modeldriven-software-engineer-
ing-in-practice-chapter-1-introduction

[Brambilla 2012b]
Brambilla, Marco; Cabot, Jordi; & Wimmer, Manuel. Model-Driven Software Engineering in
Practice. Morgan & Claypool, 2012.

[Carr 1993]
Carr, Marvin; Konda, Suresh; Monarch, Ira; Walker, Clay F.; & Ulrich, F. Carol. Taxonomy-
Based Risk Identification (CMU/SEI-93-TR-006). Software Engineering Institute, Carnegie
Mellon University, 1993. http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=11847

[Comella-Dorda 2004]
Comella-Dorda, Santiago; Dean, John; Lewis, Grace; Morris, Edwin; Oberndorf, Patricia; & Har-
per, Erin. A Process for COTS Software Product Evaluation (CMU/SEI-2003-TR-017). Software
Engineering Institute, Carnegie Mellon University, 2004. http://resources.sei.cmu.edu/library/as-
set-view.cfm?assetid=6701

[DAU 2014]
Defense Acquisition University. ACQuipedia - Acquisition Strategy. DAU, 2014.
https://dap.dau.mil/acquipedia/Pages/ArticleDetails.aspx?aid=2338b79c-7d13-4802-aac1-
d905c2d95c0a#

[Davies 2014]
Davies, Jim; Gibbons, Jeremy; Welch, James; & Crichton, Edward. “Model-Driven Engineering
of Information Systems: 10 Years and 1000 Versions.” Science of Computer Programming 89,
Part B (Sep. 2014): 88–104.

[Diskin 2012]
Diskin, Zinovy & Maibaum, Tom. “Category Theory and Model-Driven Engineering: From For-
mal Semantics to Design Patterns and Beyond,” 1–21. Proceedings of the Seventh Workshop on
Applied and Computational Category Theory (ACCAT 2012). Tallinn, Estonia, Apr. 2012. Elec-
tronic Proceedings in Theoretical Computer Science, 2012. doi: 10.4204/EPTCS.93.1

http://re-sources.sei.cmu.edu/library/asset-view.cfm?assetid=48061
http://re-sources.sei.cmu.edu/library/asset-view.cfm?assetid=48061
http://re-sources.sei.cmu.edu/library/asset-view.cfm?assetid=48061
http://www.slideshare.net/mbrambil/modeldriven-software-engineer-ing-in-practice-chapter-1-introduction
http://www.slideshare.net/mbrambil/modeldriven-software-engineer-ing-in-practice-chapter-1-introduction
http://www.slideshare.net/mbrambil/modeldriven-software-engineer-ing-in-practice-chapter-1-introduction
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=11847
http://resources.sei.cmu.edu/library/as-set-view.cfm?assetid=6701
http://resources.sei.cmu.edu/library/as-set-view.cfm?assetid=6701
http://resources.sei.cmu.edu/library/as-set-view.cfm?assetid=6701
https://dap.dau.mil/acquipedia/Pages/ArticleDetails.aspx?aid=2338b79c-7d13-4802-aac1-d905c2d95c0a#
https://dap.dau.mil/acquipedia/Pages/ArticleDetails.aspx?aid=2338b79c-7d13-4802-aac1-d905c2d95c0a#

CMU/SEI-2015-TN-005 | 35

[DoD 2010]
Department of Defense Deputy Chief Information Officer. DoDAF Architecture Framework Ver-
sion 2.02. U.S. Department of Defense, 2010. http://dodcio.defense.gov/dodaf20.aspx

[Feiler 2012]
Feiler, Peter H. & Gluch, David P. Model-Based Engineering with AADL: An Introduction to the
SAE Architecture Analysis and Design Language. Addison-Wesley Professional, 2012. http://re-
sources.sei.cmu.edu/library/asset-view.cfm?assetid=30284

[Firth 1987a]
Firth, Robert; Mosley, Vicky; Pethia, Richard; Roberts, Lauren; & Wood, William. A Guide to the
Classification and Assessment of Software Engineering Tools (CMU/SEI-87-TR-010). Software
Engineering Institute, Carnegie Mellon University, 1987. http://resources.sei.cmu.edu/library/as-
set-view.cfm?assetid=10267

[Firth 1987b]
Firth, Robert; Wood, Bill; Pethia, Rich; Roberts, Lauren; Mosley, Vicky; & Dolce, Tom. A Clas-
sification Scheme for Software Development Methods (CMU/SEI-87-TR-041). Software Engi-
neering Institute, Carnegie Mellon University, 1987. http://resources.sei.cmu.edu/library/asset-
view.cfm?assetid=10487

[Greenfield 2004]
Greenfield, Jack; Short, Keith; Cook, Steve; Kent, Stuart; & Crupi, John. Software Factories: As-
sembling Applications with Patterns, Models, Frameworks, and Tools. Wiley, 2004.

[ISO 2011]
International Organization for Standardization. ISO/IEC/IEEE 42010 Systems and Software Engi-
neering—Architectural Description. ISO, 2011.

[Mittal 2013]
Mittal, Saurabh & Martín, José Luis Risco. “Model-Driven Systems Engineering for Netcentric
System of Systems with DEVS Unified Process,” 1040–1051. Proceedings of the Winter Simula-
tion Conference (WSC '13). Washington, DC, Dec. 2013. IEEE Computer Society Press, 2013.

[Pastor 2007]
Pastor, Oscar & Molina, Juan Carlos. Model-Driven Architecture in Practice. Springer, 2007.

[OMG 2003]
Object Management Group. MDA Guide Version 1.0.1 (Specification omg/2003-06-01). OMG,
2003.

[Selic 2008]
Selic, Bran. “Personal Reflections on Automation, Programming Culture, and Model-Based Soft-
ware Engineering.” Automated Software Engineering 15, 3-4 (Dec. 2008): 379–391.

http://dodcio.defense.gov/dodaf20.aspx
http://re-sources.CMU/SEI-2015-TN-005
http://re-sources.CMU/SEI-2015-TN-005
http://re-sources.CMU/SEI-2015-TN-005
http://resources.sei.cmu.edu/library/as-set-view.cfm?assetid=10267
http://resources.sei.cmu.edu/library/as-set-view.cfm?assetid=10267
http://resources.sei.cmu.edu/library/as-set-view.cfm?assetid=10267
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=10487
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=10487
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=10487

CMU/SEI-2015-TN-005 | 36

[Weigert 2006]
Weigert, Thomas & Weil, Frank. “Practical Experiences in Using Model-Driven Engineering to
Develop Trustworthy Computing Systems,” 208–217. Proceedings of IEEE International Confer-
ence on Sensor Networks, Ubiquitous, and Trustworthy Computing (SUTC’06). Taichung, Tai-
wan, Jun. 2006. IEEE Computer Society Press, 2006. doi: 10.1109/SUTC.2006.106

[Whittle 2013]
Whittle, J.; Hutchinson, J.; & Rouncefield, M. “The State of Practice in Model-Driven Engineer-
ing.” IEEE Software 31, 3 (May/Jun. 2013): 79–85.

[Wood 1988]
Wood, Bill; Pethia, Richard; Gold, Lauren Roberts; & Firth, Robert. A Guide to the Assessment of
Software Development Methods (CMU/SEI-88-TR-008). Software Engineering Institute, Carnegie
Mellon University, 1988. http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=10609

http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=10609

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

March 2015

3. REPORT TYPE AND DATES
COVERED

Final

4. TITLE AND SUBTITLE

Model-Driven Engineering: Automatic Code Generation and Beyond

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

John Klein, Harry Levinson, and Jay Marchetti

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2015-TN-005

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFLCMC/PZE/Hanscom

Enterprise Acquisition Division

20 Schilling Circle

Building 1305

Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

Increasing consideration of model-driven engineering (MDE) tools for software development efforts means that acquisition executives
must more often deal with the following challenge: Vendors claim that by using MDE tools, they can generate software code automati-
cally and achieve high developer productivity. However, MDE consists of more than code generation tools; it is also a software engineer-
ing approach that can affect the entire lifecycle of a system from requirements gathering through sustainment. This report focuses on the
application of MDE tools for automatic code generation when acquiring systems built using these software development tools and pro-
cesses. The report defines some terminology used by MDE tools and methods, emphasizing that MDE consists of both tools and meth-
ods that must align with overall acquisition strategy. Next, it discusses how the use of MDE for automatic code generation affects
acquisition strategy and introduces new risks to the program. It then offers guidance on selecting, analyzing, and evaluating MDE tools
in the context of risks to an organization’s acquisition effort throughout the system lifecycle. Appendices provide a questionnaire that an
organization can use to gather information about vendor tools along with criteria for evaluating tools mapped to the questionnaire that
relate to acquisition concerns.

14. SUBJECT TERMS

acquisition strategy, automatic code generation, model-driven engineering, risk taxonomy, sus-
tainment, system lifecycle

15. NUMBER OF PAGES

51

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18

298-102

	Acknowledgments
	Executive Summary
	Abstract
	1 Introduction
	2 Overview of Model-Driven Software Engineering
	3 Acquisition Strategy Implications
	4 Selecting and Evaluating MDE Tools
	5 Conclusions
	Appendix A Tool Evaluation Criteria
	Appendix B MDE Tool Vendor Self-Assessment Instrument
	References

