This video and all related information and materials (“materials”) are owned by Carnegie Mellon University. These materials are provided on an “as-is” “as available” basis without any warranties and solely for your personal viewing and use.

You agree that Carnegie Mellon is not liable with respect to any materials received by you as a result of viewing the video, or using referenced websites, and/or for any consequences or the use by you of such materials.

By viewing, downloading, and/or using this video and related materials, you agree that you have read and agree to our terms of use (www.sei.cmu.edu/legal/).

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Copyright 2016 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[Distribution Statement A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

CERT® is a registered mark of Carnegie Mellon University.

DM-0003515
Continuous Integration
Secure DevOps

Hasan Yasar,
Technical Manager
Secure Lifecycle Solutions

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213
What Is DevOps?
The DevOps Movement Began as a Reaction …

to years of disconnect between Development and Operations that began to manifest itself as conflict and inefficiency
Water - Scrum - Fall

Jez Humble, https://youtu.be/L1w2_AY82WY
Silos Block Collaboration

- Dev
- Ops
- QA
- Analysts
Silos Reinforce Waterfall

Teams have moved to Agile methodologies, but roles still align with waterfall methods
Polling Question

Would you like more information about DevOps?

1. Yes
2. No
DevOps is an Extension of Agile Thinking

Agile

Embrace constant change

Embed Customer in team to internalize expertise on requirements and domain

DevOps

Embrace constant testing, delivery

Embed Operations in team to internalize expertise on deployment and maintenance
DevOps Aims to Increase…

...the pace of **innovation**

...**responsiveness** to business needs

...**collaboration**

...software **quality**
DevOps Has Four Primary Focus Areas

Collaboration between project team roles

Infrastructure as Code: Scripted Infrastructure Configuration

Automation of Tasks / Processes / Workflows

Monitoring Applications and Infrastructure
Continuous Integration
Software projects consist of many artifacts

Integration can be challenging

Merge Conflict!

- Code
 - Developer
- Code
 - Developer
- Images
 - Designer
- Environment Configuring Scripts
 - Operations
This is often a manual process
Manual Integration is Flawed

Human-driven processes are...

- Infrequent
- Expensive
- Repetitive
- Error-prone

This leads to:

- **Disjointed** activities / components
- **Slow**, unreliable, costly reporting and failure recognition
- **Lack of transparency** of problems
- **Integration Hell**
Polling Question

Do you currently implement Continuous Integration in your development cycle?

1. Yes
2. No
Automating Integration Fixes These Issues

Automation...

Removes inefficiencies due to human-driven process

Standardizes artifact submission process

Guarantees **consistent results**

Allows team to **fail fast** (and fix fast)

Reduces pain of integration
[Distribution Statement A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.
Human actions/inputs to the software development process
Actions performed by autonomous systems
Continuous Integration is Even Better

Continuous Integration uses a **build server** to…

- Integrate artifacts on **every change**
- Give team with **immediate notification** of failure or success
- **Require issues be fixed** before moving forward
- **Enforce standards** (can fail based on quality as well as functionality)
Integration and communication, even among tools, is the key!
Continuous Integration (CI) Model

- **Manual Process**
- **Automated Process**

![Diagram of Continuous Integration Model]

- **Project Team**
 - Source Code Repository
 - App Code
 - Infrastructure code
 - Documentation

- **Build**
- **Automated Testing**
- **Automated Deployment**

- **Status/Feedback**

- **Production**
- **Customer Visibility**
- **QA Team**
Fail the Build When Software is Not Good Enough

Don’t just configure failure for compile/build errors!

Want 90% test coverage? **Fail the build if code base is <90% covered**

Want all DB queries < 2sec? **Test them, and fail the build otherwise**

Want to make sure code conforms to style guide? **You guessed it…**

CI is your best tool to enforce quality standards
Secure DevOps

Integrating Security practices into DevOps
Team Composition

Developers
- Features
- Quality Attributes
- Efficiency
- Performance
- Users
- Authentication
- Authorization

IT Ops
- Deployment
- Maintenance
- Updates
- Change policy
- Failure
- Data loss
- Risk prevention

QA
- Testable
- Issue tracking
- Bug Reports
- Usability
- Help Desk

Security Team
- Data Privacy
- Intrusion detection
- Threat vectors
- CVEs
- Package security
- Authentication
- Authorization
- Security Standards Compliance
DevOps: Multiple Team Integrations

- Software Engineering
- Quality Assurance
- Technology Operations

DevOps
DevOps: Multiple Team Integrations + *With Security Team*
DevOps: Multiple Team Integrations + *With Security Team*

- Software Engineering
- Quality Assurance
- Technology Operations
- Security

Secure DevOps
Polling Question

At what point do you consider security?

a. At the very beginning
b. Sometimes in the middle
c. Toward the end
d. Not at all
Dev Lifecycle

- Commit
- Continuous Integration/Testing
- QA/Integration Testing
- Continuous Deployment
- Code/Test
Dev Lifecycle + Business
DevOps Lifecycle
Where are opportunities for security processes?
DevOps Lifecycle

Threat Modeling,
Security as a quality attribute
DevOps Lifecycle

Secure / hardened environments
DevOps Lifecycle

Security-focused code review
DevOps Lifecycle

Automated Security Testing (Static analysis, etc)
DevOps Lifecycle

DevOps Lifecycle

Security review / acceptance testing
Security must be addressed without breaking the *rapid delivery, continuous feedback* model.
Secure DevOps

A typical scenario
Static Code Analysis

Continuous Integration → Automated Testing → Production Deployment
Static Code Analysis

Tools Vary by Technology
Static Code Analysis

Regular Expressions
Static Code Analysis

- Continuous Integration
- Automated Testing
- Production Deployment

Wrappers
Manual Security Assessments

• Centralize information needed to conduct assessments
• Pick and choose your battles
• Integrate your tools as much as possible
• Capture outputs from tools in a central repository
Continuous Integration → Automated Testing → Production Deployment

1. New Software Notification

2. Production Deployments On Hold

3. Security Assessment Scheduled

Security Team

[Distribution Statement A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.
Continuous Integration → Automated Testing → Production Deployment

Continuous Integration → Automated Testing → Production Deployment

More on SEI DevOps Blog

https://insights.sei.cmu.edu/devops
Contact Information

Hasan Yasar

hyasar@cmu.edu

https://www.linkedin.com/in/hasanyasar