Eliciting and Specifying Quality Attribute Requirements

Rob Wojcik
Senior Technical Staff

Rob is a senior member of the technical staff in the Research, Technology, and System Solutions Program at the Carnegie Mellon University’s Software Engineering Institute (SEI), a position he has held since 2004. In his current position, he performs training and consulting in software architecture technology and software architecture evaluations.
What we’ll discuss today

Quality Attributes
Eliciting Quality Attribute Requirements
Quality Attribute Workshop
Quality Attribute Scenarios

I’ll take questions at the end of the presentation.
Polling Question

When is the best time to specify quality attribute (non-functional) requirements?

1. After the software architecture is established
2. Before the software architecture is established
3. Quality attributes are not important
What are Quality Attributes?

Measurable or testable properties of a system used to indicate how well the system satisfies the needs of its stakeholders.

Here are some examples of quality attributes:

- availability
- configurability
- modifiability
- performance
- reliability
- reusability
- security
- throughput
Stakeholders and Quality Attributes

Stakeholder Needs

"Increase market share" ➔ Modifiability, Usability

"Maintain a quality reputation" ➔ Performance, Usability, Availability

"Introduce new capabilities seamlessly" ➔ Performance, Availability, Modifiability

"Provide a programmer-friendly framework" ➔ Modifiability

"Integrate with other systems easily" ➔ Interoperability, Portability, Modifiability

Quality Attribute Requirements
Quality Attributes and Architecture

The degree to which a system satisfies quality attribute requirements is directly dependent on architectural structure.

Consequently, architects need to have a solid understanding of the quality attribute requirements for a system when they are designing the system’s software architecture.
Polling Question

What approach does your organization use to specify quality attribute requirements?

1. We ask management what they think the system should do.

2. We discuss the system’s quality attributes once the system is designed.

3. We use a method to gather the views of all our stakeholders early in the development life cycle.

4. We don’t worry about quality attributes.
Eliciting Quality Attribute Requirements

Yet these are critical to architectural design!

Eliciting functional requirements and design constraints

Good Job

Eliciting quality attribute requirements

Bad Job
Problems With Quality Attribute Requirements

Non-Operational requirements

- “The system must be easy to use.”
- “The system must have high performance.”
- “The system must be portable.”

Debating the quality attribute to which a system behavior belongs

- “The system must process 10,000 messages per second.”

Vocabulary variations

- Everyone knows what “high performance” means, right?
Quality Attribute Workshop (QAW)

Facilitated method

• system-centric
 • used before the software architecture has been created

Engages system stakeholders early in the life cycle
Reveals the driving quality attribute requirements of a software-intensive system
 • scenario based

A QAW delivers the quality attribute requirements for the system, documented as refined and prioritized quality attribute scenarios

The quality attribute scenarios can then be used as the basis for designing the software architecture for the system.
QAW Steps

1. QAW Presentation and Introductions
2. Business/Programmatic Presentation
3. Architectural Plan Presentation
4. Identification of Architectural Drivers
5. Scenario Brainstorming
6. Scenario Consolidation
7. Scenario Prioritization
8. Scenario Refinement
QAW Steps

1. QAW Presentation and Introductions
2. Business/Programmatic Presentation
3. Architectural Plan Presentation
4. Identification of Architectural Drivers
5. Scenario Brainstorming
6. Scenario Consolidation
7. Scenario Prioritization
8. Scenario Refinement

Today’s focus
Step 4: Identification of Architectural Drivers

The QAW facilitators identify the architectural drivers that are key to realizing quality attribute goals by

• presenting a distilled list of the architectural drivers they heard during the Business/Programmatic and Architecture Plan presentations
• asking for clarifications, additions, or deletions to reach a consensus on the architectural drivers

The final list of architectural drivers focuses the stakeholders during scenario brainstorming.
Step 5: Scenario Brainstorming

Stakeholders generate scenarios using a facilitated brainstorming process.

Each stakeholder either generates a scenario in round-robin fashion or opts to pass.

Each stakeholder may have an opportunity to contribute more than one scenario, depending on the number of stakeholders in the QAW and the allocated time for the workshop.
Step 5: Scenario Brainstorming

Scenario brainstorming guidance

- Quality attribute requirements are most effectively characterized vis-à-vis scenarios.

- Scenarios are “short stories” that describe a system interaction with respect to some quality attribute.

- Well-formed scenarios have a stimulus, an environment, and a response.

- The QAW focuses on three kinds of scenarios:
 - use case – anticipated uses of the system
 - growth – anticipated changes to the system
 - exploratory – unanticipated stresses to the system (uses and/or changes)
Stimuli, Environment, Responses

Use case scenario

A remote user requests a database report via the Web during a peak period and receives it within 5 seconds.

Growth scenario

Add a new data server to reduce latency in the use case scenario to 2.5 seconds within 1 person-week.

Exploratory scenario

Half of the servers go down during normal operation without affecting overall system availability.
Step 6: Scenario Consolidation

The QAW facilitators ask stakeholders to identify those scenarios that are very similar in content.

- Similar scenarios are merged to prevent a “dilution” of votes when voting is done in the next step.

- QAW facilitators attempt to reach a consensus with the stakeholders before merging scenarios.
Example of scenario consolidation

Scenarios that are similar in content are grouped together.

- In the event of a processor fault, the system can be rebooted/reinitialized.

- A processor failure or crash doesn’t adversely affect any other components (no second-order failures).

- Software continues to operate even if the host fails (mission computer).
Step 7: Scenario Prioritization

Each stakeholder is allocated a number of votes equal to approximately 30% of the number of scenarios generated.

- The actual number of votes allocated to stakeholders is rounded up to an even number of votes.

- Voting occurs in two rounds where each stakeholder allocates exactly half of his or her total votes in each round.

- Stakeholders can allocate any number of votes to any scenario they like.

- Votes are counted, and the scenarios are prioritized accordingly.
Step 8: Scenario Refinement

The top scenarios are further refined.

• Typically, the top five scenarios are refined, but the exact number will depend on the time available.

The QAW facilitators further elaborate each scenario and

• document the business/programmatic goals affected by the scenario

• describe the relevant quality attributes

• rephrase it in six parts: a stimulus, a stimulus source, an environment, an artifact, a response, and a response measure

• document a list of related questions that stakeholders want to ask

• document any issues that may arise during scenario refinement
Example Scenario Refinement - 1

<table>
<thead>
<tr>
<th>Scenario</th>
<th>The track capacity is saturated during peak operations over a large-sized theatre and degrades in a predictable and useful manner.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business Goals</td>
<td>Mission effectiveness</td>
</tr>
</tbody>
</table>
| Quality Attributes | • performance
 • scalability |
Example Scenario Refinement - 2

<table>
<thead>
<tr>
<th>Stimulus</th>
<th>Some resource capacity is saturated (or hits high watermark).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stimulus Source</td>
<td>Network, memory, applications, and so on</td>
</tr>
<tr>
<td>Environment</td>
<td>Operational with high load conditions (or battle damage)</td>
</tr>
<tr>
<td>Artifact</td>
<td>Track Manager or host system</td>
</tr>
</tbody>
</table>
| Response | • throttling appropriately
• request for or release of resources |
| Response Measure | Predictable behavior as appropriate per platform |
Example Scenario Refinement - 3

<table>
<thead>
<tr>
<th>Questions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>What is the track capacity? Is it based on hardware? How do you know it’s saturated?</td>
<td>In what ways can you degrade the quality of service associated with the tracks?</td>
</tr>
<tr>
<td></td>
<td>What can be automated?</td>
</tr>
<tr>
<td></td>
<td>Which architectural decisions apply and support that automation?</td>
</tr>
<tr>
<td></td>
<td>Which degrade modes do stakeholders want to see implemented?</td>
</tr>
<tr>
<td>Issues</td>
<td>We can’t size systems a priori to eliminate oversaturation. Track Manager needs a way to compensate for saturation in a doctrinally appropriate manner. Open a dialogue with the applications using Track Manager to identify objects of interest, so that applications can have a say in this answer.</td>
</tr>
</tbody>
</table>
For More Information

Contact me at

Rob Wojcik
rwojcik@sei.cmu.edu

- Find out more about the QAW:
 www.sei.cmu.edu/architecture/tools/establish/qaw.cfm

- For more about the SEI approach to quality attributes and architecture-centric engineering, start exploring at
 www.sei.cmu.edu/architecture/

- Also see Software Architecture in Practice, 3rd edition written by Len Bass, Paul Clements, & Rick Kazman and published by Addison-Wesley as part of the SEI Series in Software Engineering.

- Visit www.sei.cmu.edu/library/abstracts/books/9780321815736.cfm
As projects continue to grow in scale and complexity, effective collaboration across geographical, cultural, and technical boundaries is increasingly prevalent and essential to system success. SATURN 2012 will explore the theme of "Architecture: Catalyst for Collaboration."

www.sei.cmu.edu/saturn/2013