Supply-Chain Risk Analysis

Bob Ellison, Chris Alberts, Rita Creel, Audrey Dorofee, and Carol Woody
Biography: Bob Ellison

Bob Ellison is a senior member of the technical staff of the CERT program at the Software Engineering Institute. He is currently the technical leader of a DHS funded project on supply-chain risks. He participated in the design and development of the DHS Build-Security-In Web site and continues to contribute articles to it. His recent work includes the development of the Survivability Analysis Framework which considers the affects of security threats on complex operational business processes. He is a coauthor of the book “Software Security Engineering: A Guide for Project Managers” (Addison-Wesley 2008)
Polling Question #1

How did you hear about this webinar?

1. Social Media (i.e., LinkedIn, Twitter)
2. SEI Website
3. SEI Member Bulletin
4. Email invitation from the SEI
5. Website with webinar calendar (i.e., www.webinar-directory.com)
Software Supply Chain

The network of stakeholders that contribute to the content of a software product or that have the opportunity to modify its content.

Comprehensive National Cybersecurity Initiative 11
Polling Question #2

Has your organization had a problem with software malware in the last year?

Answers:
- Yes
- No
- Do not know
What We Will Cover

Software supply-chain complexity: slides 6-8

Strategy: slides 10-18

Supply-chain risk example 20-40

Summary: slides 42-44
Supply-Chain Risk Examples

Hardware
- Manufacturing and delivery disruptions
- Manufacturing quality
- Counterfeit hardware estimated at 10%
- Decades of data collection for physical supply chains

Software
- Third-party tampering during development or delivery
- Malicious supplier
- Compromised by inadvertent introduction of exploitable design or coding errors
- Very little data for software supply chains
Software Supply Chain Complexity

Composite inherits risk from any point in supply chain
Poor Visibility: Incomplete information
Output: One-off software components
The Landscape

Complexity3

ICT SCRM Standards Landscape

DRAFT 1/12/10

Systems and Software Technology Conference 2010, Don Davidson, Globalization Task Force, DoD
Strategy
Propagation of Supply-Chain Risks

<table>
<thead>
<tr>
<th>Selection</th>
<th>Evidence of Secure Software</th>
<th>Integration</th>
<th>Deployment Over time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction
Secure Development Practices</td>
<td>Supplier and independent verifications
Used recommended mitigations from CWE
Weaknesses and mitigations tested
Systematic testing of invalid input
Static analysis of source code</td>
<td>Mitigation of risks not adequately addressed by supplier
Effects of component supply-chain risk on aggregate system
Risks induced by integration: Assumption mismatches
Verify that aggregate risk is still acceptable</td>
<td>Install supplier updates
Periodically update risk assessment: changes in usage, attack patterns, product updates, suppliers
Monitor operational system behavior for unexpected events: test of design assumptions</td>
</tr>
<tr>
<td>Governance
Training
Supplier and subcontractor management
Verification of third-party software</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplicant and independent verifications
Used recommended mitigations from CWE
Weaknesses and mitigations tested
Systematic testing of invalid input
Static analysis of source code</td>
<td>Mitigation of risks not adequately addressed by supplier
Effects of component supply-chain risk on aggregate system
Risks induced by integration: Assumption mismatches
Verify that aggregate risk is still acceptable</td>
<td>Install supplier updates
Periodically update risk assessment: changes in usage, attack patterns, product updates, suppliers
Monitor operational system behavior for unexpected events: test of design assumptions</td>
<td></td>
</tr>
</tbody>
</table>
Information Needs by Activity

<table>
<thead>
<tr>
<th>Selection</th>
<th>Evidence of Secure Software</th>
<th>Integration</th>
<th>Deployment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge of Supplier Capabilities</td>
<td>Knowledge of Product Attributes</td>
<td>Operational Capabilities</td>
<td></td>
</tr>
</tbody>
</table>

Relative Effort
Supply-Chain Risk Categories

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acquirer Capability</td>
<td>Operational preparedness, acquisition task execution, event management</td>
</tr>
<tr>
<td>Supplier Capability</td>
<td>Governance, Construction, Verification, Deployment</td>
</tr>
<tr>
<td>Product</td>
<td>An assessment of the problems and issues associated with a software product</td>
</tr>
<tr>
<td>Product Logistics</td>
<td>Access control of the software product at each step in the supply chain</td>
</tr>
<tr>
<td>Operational Product Control</td>
<td>Implementation of appropriate operational configuration and monitoring controls to reduce the risk of unauthorized changes to software products</td>
</tr>
</tbody>
</table>
A solution depends on a combination of

• Supplier capabilities to create secure software
 — A necessity

• Product verification
 — What evidence shows that supplier expertise has been effectively applied to produce more secure software?

• Acquirer capabilities
 — Capability to manage multiple suppliers
 — Match software usage with supplier’s intent
 — Manage changes in usage, suppliers, and attack patterns
Acquirer has to plan for security after deployment

- No guaranteed way to find maliciously inserted code
- Supply chain risk assessment can be invalidated by
 - New attack techniques and software weaknesses
 - Changes in acquirer usage that activate unused product features
 - Product upgrades that add features or change implementation
 - Increase in criticality with new or expanded usage
 - Changes in the supplier risk factors: mergers, corporate policies, staff training, development life cycle
- Operational management has to deal with incomplete supplier, product, and attack risk information
Polling Question #3

Does your organization consider a vendor’s capabilities to produce secure software when purchasing COTS software or outsourcing software development?

Answers:

- Yes
- No
- Do not know
SEI Project

Supply Chain Risk Model

• Develop a model that helps to structure and simplify analysis
• Initial focus on software supply chain
• Software supply chain risk management is more than a supplier assessment
 — Manage supply-chain risks that continue into deployment
 — Need increased understanding of allocation of responsibilities among suppliers and acquirers
Supply Chain Drivers

A systemic risk assessment is based on a small set of factors that strongly influence the eventual outcome or result.

These factors are commonly referred to as drivers. SEI experience shows that about 15-25 drivers are needed to establish a comprehensive profile of systemic risks to mission success.

These drivers reflect both supplier and acquirer factors.
General Set of Supply-Chain Drivers

1. Software Supply-Chain Objectives
2. Acquisition Plan
3. Contracts
4. Development Process
5. Acquisition Task Execution
6. Coordination
7. Software Supply-Chain Interfaces
8. Information Management
9. Technology
10. Facilities and Equipment
11. Environmental Conditions
12. Compliance
13. Event Management
14. Requirements
15. Architecture
16. Design, Code, and Test
17. System Functionality
18. System Integration
19. Operational Support
20. Adoption Barriers
21. Operational Preparedness
22. System Risk Tolerance
23. Certification and Accreditation
24. Sustainment
Software Supply-Chain Risk Example
A Supply-Chain Weakness

Existing vulnerabilities present easy and effective opportunities for attackers – errors support malicious activities

Can reduce likelihood of vulnerabilities with incremental changes in development practices

- Draw from
 - Microsoft’s Secure Development Life Cycle
 - SAFECODE
 - Build Security In Maturity Model (BSIMM)
Prevalence of Software Errors

MITRE has documented software errors that have led to exploitable vulnerabilities: Common Weakness Enumeration (CWE)

CWE/SANS¹ Top 25 Most Dangerous Programming Errors published yearly by MITRE – 3/1/2010

Examples

- Improper Input Validation
- Cross-site scripting
- Download of Code Without Integrity Check
- Race Condition
- SQL Injection
- Use of Hard-coded Credentials
- Improper Check for Unusual or Exceptional Conditions
- Classic Buffer Overflow

SANS (SysAdmin, Audit, Network, Security) Institute
Veracode: State of Software Security

58% of all applications did not achieve an acceptable security score upon first submission – 3/1/2010

Measured Against CWE/SANS Top-25 Errors

<table>
<thead>
<tr>
<th>Software Source</th>
<th>Acceptable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outsourced</td>
<td>6%</td>
</tr>
<tr>
<td>Open Source</td>
<td>39%</td>
</tr>
<tr>
<td>Internally Developed</td>
<td>30%</td>
</tr>
<tr>
<td>Commercial</td>
<td>38%</td>
</tr>
</tbody>
</table>

Veracode: The pervasiveness of easily remedied weaknesses suggests developer training for secure software development is a critical supplier criteria.
SQL Database Query

User Input
48983

Output: All records with ID = 48983
48983 Sally Middleton $74,210

Could involve multiple supply chains: web server, SQL database, and contracted software development
CWE-89: Attacker View - SQL Injection

CWE: 116 Use Output Encoding or Escaping “48983 OR (1 = 1)” SQL commands in quotes are not executed

Attack Enabler

SQL Database

Attack Target

Process
Input

SQL Commands

Display
Output

Output: All records where ID = 48983
OR where (1 = 1)
All Employees

48983 OR (1 = 1)

Data SQL Command
Invalid Input

Channel: Attacker Access

Data Source

CWE-20: Input validation
CWE-89 Sanitize Special Elements used in an SQL Command
Assessments By Activity

Selection

Construction
Secure Development Practices

Governance
Training
Supplier and subcontractor management
Verification of third-party software

Knowledge of Supplier Capabilities
Knowledge of Product Attributes
Driver: Design, Code and Test

Is the code’s quality sufficient to meet system requirements and provide the desired operational capability

<table>
<thead>
<tr>
<th>Design reviews</th>
<th>Analysis of attack patterns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source code reviews</td>
<td>Threat/vulnerability analysis</td>
</tr>
<tr>
<td>Coding practices</td>
<td>Software security testing</td>
</tr>
<tr>
<td>Static code analysis</td>
<td>Dynamic testing</td>
</tr>
<tr>
<td>Unit and integration testing</td>
<td>Code interfaces and dependencies</td>
</tr>
<tr>
<td>Analysis of common weaknesses</td>
<td></td>
</tr>
</tbody>
</table>
Evidence of Secure Software

Supplier and/or independent verifications
Used recommended mitigations
Likely software weaknesses and mitigations tested
Systematic testing of invalid input
Static analysis of source code

Knowledge of Supplier Capabilities
Knowledge of Product Attributes
Product Evidence: Testing

Security Testing

- Potential software weaknesses and mitigations tested
- Systematic testing of invalid input – fuzz testing
- Static analysis of source code

Testing is increasingly automated and outsourced

- Limited value for risk analysis:
 - We know neither the consequences or likelihood for any remaining vulnerabilities nor the costs and effectiveness of possible mitigations
- Expensive redesign and mitigations: Veracode statistics on initial failures for security testing.
A system with more targets, more enablers, more channels or more generous access rights provides more opportunities to the attacker.

Attack surface: targets, enablers (exploitable features), communication channels, and access controls
Using Attack Surface Analysis

Reduce Attack Surface

• Remove or change system features or re-architect the implementation to avoid attack enablers or unnecessary channels.
• Revise use of an emerging technology where there is limited knowledge of the potential exploits and mitigations
• Review requirements or implementation if existing mitigations are costly or do not provide the necessary assurance
Data Flow Analysis

- **Input validation**
 - Sanitize Special Elements used in an SQL Command

- **Process Input**
 - 48983 OR (1 = 1)

- **Use Output Encoding or Escaping Quote:** "48983 OR (1 = 1)"

- **SQL Commands**

- **SQL Database**

- **Display Output**
 - All Employees

Data flow analysis

- Identify sources of vulnerabilities: Mix of data and commands
- Consider consequences
- Analyze mitigations
- Provide architecture and design guidance
Data Flow Analysis Benefits

Supports

- Objective trade-off discussions involving security risks during initial development or with later upgrades
- Supply-chain risk management – consequences and mitigations
- Traceability and business justifications
- System integration – insight into design assumptions, attack patterns considered and mitigation strategy
- Operational monitoring – design assumptions about expected behavior
Threat Modeling

Threat Modeling: During a data flow walk through

- Document security assumptions and trust boundaries
- Consider known weaknesses and attack patterns
- Consider deployed configuration and expected usage
- Analyze the interfaces to other components (inputs and outputs)
- Analyze possible mitigations

Value recognized – Microsoft’s SDL, BSIMM collection of current practices drawn from thirty firms

See Stevens (references) for adoption considerations
Driver: Acquisition Task Execution

Are tasks and activities performed effectively and efficiently?

<table>
<thead>
<tr>
<th>Experience and expertise of management and staff</th>
<th>Sufficient experience in software security, reliability, and safety engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resources allocated to tasks and activities</td>
<td>Experience with software supply chains</td>
</tr>
</tbody>
</table>
Polling Question #4

Do your suppliers and in-house developers incorporate threat modeling as part of the vulnerability analysis?

Answers:
- Yes
- No
- Do not know
Incorporate into Acquisition: RFP

RFP: ask for evidence

- Development staff training
- Documentation of potential attacks and mitigations
- Supplier capabilities as demonstrated with development of other systems
- For contracted development, require application of threat modeling to analyze risks associated with architecture and design decisions
Driver: Contracts

Are the contract mechanisms with each participating group or team sufficient?

Includes suppliers contracts with their suppliers or subcontractors

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acquisition and development</td>
<td>Sufficient focus on software security, reliability, and safety</td>
</tr>
<tr>
<td>development strategies</td>
<td></td>
</tr>
<tr>
<td>Resources</td>
<td>Contracts with each participating group or team</td>
</tr>
<tr>
<td>Funding</td>
<td>Schedule</td>
</tr>
<tr>
<td>Intellectual property</td>
<td>Alignment among the contracts of participating groups or teams</td>
</tr>
<tr>
<td>considerations</td>
<td></td>
</tr>
<tr>
<td>Licensing agreements</td>
<td>Roles and responsibilities</td>
</tr>
</tbody>
</table>
Integration and Deployment

Integrate: Multiple Suppliers

- Mitigation of risks not adequately addressed by supplier
- Effects of component supply-chain risks on aggregate system
- Risks induced by integration: Assumption mismatches
- Verify that aggregate risk is still acceptable

Deployment Over time

- Install supplier updates
- Periodically update risk assessment: changes in usage, attack patterns, product updates, suppliers
- Monitor operational system behavior for unexpected events: test of design assumptions
Driver: System Integration

Will the system sufficiently integrate and interoperate with other systems when deployed?

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interfaces</td>
<td>COTS software</td>
</tr>
<tr>
<td>Applications</td>
<td>Performance, security, reliability, and safety of the integrated system</td>
</tr>
<tr>
<td>Tools</td>
<td>Failure analysis</td>
</tr>
<tr>
<td>Hardware</td>
<td>Security testing</td>
</tr>
<tr>
<td>Data</td>
<td>Legacy systems</td>
</tr>
</tbody>
</table>
Driver: Event Management

Does the software supply chain have sufficient capacity and capability to identify and manage potential events and changing circumstances?

<table>
<thead>
<tr>
<th>Expected and unexpected potential events and changing circumstances</th>
<th>Program continuity, disaster, and contingency plans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Changes in personnel or suppliers</td>
<td>Issue/problem management plan, process, and tools</td>
</tr>
<tr>
<td>Changes in product usage</td>
<td>Changes in requirements</td>
</tr>
</tbody>
</table>
Manage Supply-Chain Risk

Operational Context, e.g., usage, requirements, operational preparedness, risk tolerance

Acquisition Scope, e.g., product, system, system of systems, major upgrade, component replacement

Supplier Capability Data, i.e., guidance for supplier evaluation

Preliminary Product Data, i.e., guidance for product evaluation

Supplier Product Development Information, e.g., architecture, design-code-test, compliance, supply-chain interfaces, event management

Acquirer Information, e.g., acquisition plan, acquisition task execution, event management

Operational Product Control, i.e., monitoring and configuration control of software products

Acquisition Characteristics

- **Identify Supply-Chain Risk Drivers**

- **Analyze Supply-Chain Risk**

- **supply Chain Evidence**

- **Acquirer Risk Mitigation Actions**

Manage Risk
Summary

Supplier, acquirer, and operator all have roles to ensure good practices are applied!

A supply-chain risk model helps to manage complexity and provides a structure for risk analysis

Example: Remove widely exploited software weaknesses with known mitigations

- Feasible
- Incremental changes to existing software development and acquisition life cycles
- Demonstrated value
Sources

Evaluating and Mitigating Software Supply Chain Security Risks

- http://www.sei.cmu.edu/library/abstracts/reports/10tn016.cfm

Attack Surface

Threat Modeling

- Frank Swiderski, Window Snyder, *Threat Modeling*, 2004
NO WARRANTY

THIS MATERIAL OF CARNEGIE MELLON UNIVERSITY AND ITS SOFTWARE ENGINEERING INSTITUTE IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this presentation is not intended in any way to infringe on the rights of the trademark holder.

This Presentation may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the copyright license under the clause at 252.227-7013.
SEPG Europe 2010
28 June - 1 July, 2010
Porto, Portugal

www.sei.cmu.edu/sepg/europe/2010/

SEPG is the premier, global conference series on software and systems process management
Want a Closer Connection to the SEI?

Become an SEI Member!

www.sei.cmu.edu/membership
Do you have the knowledge you need?

SEI Training

www.sei.cmu.edu/training
CERT’s Podcast Series: Security for Business Leaders

www.cert.org/podcast/
For more than 20 years, the SEI has been at the forefront of software engineering.

By becoming an SEI Partner, you join forces with a software engineering pioneer and an institute whose credibility provides a solid foundation during uncertain economic times.

SEI Partner Network

www.sei.cmu.edu/partners