Architecting Service-Oriented Systems
Philip Bianco, Grace A. Lewis, Paulo Merson, & Soumya Simanta
August 2011
TECHNICAL NOTE
CMU/SEI-2011-TN-008
Research, Technology, and System Solutions Program
Abstract
Service orientation is an approach to software systems development that has become a popular way to implement distributed, loosely coupled systems, because it offers such features as standardization, platform independence, well-defined interfaces, and tool support that enables legacy system integration. From a quality attribute point of view, the primary drivers for service orientation adoption are interoperability and modifiability. However, a common misconception is that an architecture that uses a service-oriented approach can achieve these qualities by simply putting together a set of vendor products that provide an infrastructure and then using this infrastructure to expose a set of reusable services to build systems. In reality, there are many architectural decisions that need to be made. An architectural decision that promotes interoperability or modifiability can negatively impact other qualities, such as availability, reliability, security, and performance. The goal of this report is to present general guidelines for architecting service-oriented systems, how common service-oriented system components support these principles, and the effect that these principles and their implementation have on system quality attributes.
1 Introduction
Despite a highly publicized report that claimed that "SOA is Dead,[1] the reality is that service-oriented architecture (SOA) is still a popular architectural style for designing and developing distributed systems. As with any architectural style, SOA can be described in terms of the important architectural elements and the relationships among them. In this report, we examine how the design of these elements and their relationships impact system quality.
Solutions that use a service-oriented[2] approach are intended to satisfy business or mission goals that include quality requirements such as easy and flexible integration with legacy systems (interoperability), streamlined business processes (maintainability), reduced costs (modifiability), and agility to handle rapidly changing business processes (extensibility). These are the primary architectural drivers addressed by SOA adoption, and are achieved by adhering to a set of design principles for service-oriented systems that will be described later in the report. However, there are other important quality attributes such as availability, reliability, security, and performance that have to be addressed. In addition, an architectural decision that promotes one of these quality attributes can negatively impact any other quality attribute.
As an architectural pattern, SOA is an appropriate solution in some situations; however, there are situations in which it is not appropriate or in which it has to be used in conjunction with other technologies to achieve desired system qualities. A few examples of situations when SOA may not be appropriate include the following:
Architects therefore play a crucial role in determining what expectations can or cannot be met by SOA adoption, and where decisions can be made for the benefit of the organization and the accomplishment of system quality attributes. Reasoning about these difficult decisions can be simplified by using known solutions for promoting quality attributes that are important to the systems' stakeholders. These known solutions are often codified as architectural patterns and tactics. An architectural pattern "deals with a specific, recurring problem in the design of a software system…to construct architectures with specific properties [Buschmann 1996]." Architectural patterns are used to generate designs that are predictable and well understood. Architectural patterns can be decomposed into a set of architectural tactics. Architectural tactics are design decisions that are known to influence quality attribute responses [Bass 2003]. An example of a tactic is to introduce redundancy to promote system availability by reducing system downtime (e.g., system availability rises from 99.0% to 99.9% when a redundant element is added).
The goal of this report is to show architects of service-oriented systems how to decompose these systems into a set of architectural patterns and tactics that promote important system quality goals. Section 2 summarizes existing related work. Section 3 presents a set of SOA architectural principles that are realized through patterns and tactics. Section 4 presents the common elements of a service-oriented system, how these elements support the SOA architectural principles, and the system qualities that these elements promote.
2 Summary of Existing Work
A common misconception (mostly vendor driven) is that simply by adopting a SOA strategy or even acquiring a SOA infrastructure, an organization has established a complete well-crafted architecture that will help the organization achieve its many business goals [Lewis 2007]. In reality, SOA is an architectural pattern from which an infinite number of architectures can be derived-both good and bad. Appropriate decisions regarding tradeoffs are very specific to the system in consideration, providing one more reason why organizations make a mistake in assuming that SOA represents a "finished" architecture. This section summarizes existing work that addresses the architecture and design of service-oriented systems as a key activity in the implementation of service-oriented systems. Our report builds on this existing work to provide guidance for architects that need to make design decisions in service-oriented systems.
2.1 SOA Design Patterns
Architectural patterns are used to generate designs that are predictable and well understood. These patterns leverage knowledge and experience to produce proven solutions to recurring design problems. The book SOA Design Patterns by Thomas Erl (with contributions from over thirty practitioners) as well as the SOA Patterns website, describe approximately eighty-five patterns for service-oriented systems. The goal of SOA design patterns is to provide a "master catalog and pattern language for SOA" for practitioners that are designing a system using service orientation [Erl 2009]. Some of these patterns have been described in other work, such as Design Patterns and Pattern-Oriented Software Architecture [Gamma 1994, Buschmann 1996]. Thomas Erl shows how these patterns relate to the principles of service-oriented design. Examples of patterns include
2.2 Evaluating SOA
Evaluating the architecture of a service-oriented system is not much different from evaluating any other kind of software architecture. The goal is to assess the ability of the software architecture to successfully address the requirements of the system or, more broadly, the business goals. The basic principles for the evaluation of any software architecture using a business-goal and quality-attribute-based approach, such as the Architecture Tradeoff Analysis Method (ATAM) [Bass 2003], include
These architectural evaluation principles can be applied to service-oriented systems because these systems are often part of technologically diverse environments that involve a large number of design considerations. Examples of SOA-related design decisions that are explored during an evaluation and should be considered during the design process include
Evaluating a Service-Oriented Architecture [Bianco 2007] discusses the design decisions listed above and several others, but also provides the pros and cons of the different design alternatives with respect to various quality attributes. For example, static service binding (with no registry) yields better response time, whereas dynamic service binding (with a registry) incurs a performance overhead but yields better modifiability. The report also lists sample design questions that could be raised in an architecture evaluation and during the design of a service-oriented system to make sure that different quality requirements are addressed. Some examples of these questions are
2.3 SOA Layers
There are many sources that provide a form of reference architecture or layered approach for systems that use a service-orientation approach [Bieberstein 2008, Arsanjani 2004]. These layers facilitate separation of concerns, and designers have a set of architectural decisions that need to be made in each layer. Figure 1 shows the typical layers of a service-oriented system that are primarily functional in nature.
Figure 1: SOA Layers
[Kindle users can magnify this graphic by navigating to it and center-clicking. Press the Kindle's Back button to return to this point.]
This service-oriented system includes the following layers:
Many reference architectures provide additional layers for integration, governance, monitoring, and management, as will be discussed in Section 4.5.
3 SOA Architectural Principles
SOA architectural principles are general guidelines for architecting service-oriented systems. These principles are ideally enabled by the decisions found in the architecture of the system. In a service-oriented architectural pattern we characterize explicit boundaries between its four main types of elements: service consumers, SOA infrastructure, service interfaces, and service implementation, as shown in Figure 2. [3]
Erl and others have defined additional principles for service design [Erl 2008]. The principles in this section are similar, but they apply to the full architecture of the service-oriented system: the integration of services (interface and implementation), service consumers, and the SOA infrastructure. Each principle contains a short description and a table that explains the effects that each principle has on selected system quality attributes.
Figure 2: High-Level Notional View of a Service-Oriented System
[Kindle users can magnify this graphic by navigating to it and center-clicking. Press the Kindle's Back button to return to this point.]
Architects of service-oriented systems often find themselves in a conflict. On one hand, there are business/mission goals and quality attribute requirements driving the architecture of a system. On the other hand, there are principles of service-orientation that influence the architecture of a system and impact a system's quality attributes. It is at this intersection of these two sets of quality attributes where conflicts arise and an architect needs to make decisions. The responsibility of the architect is to try to apply each principle in the context of the business goals of the system and to make the necessary tradeoffs and architectural decisions in order to meet the system's business goals. It is important to note that the impact on quality is not binary (positive or negative) because specific system context may impact the effect on quality attributes of interest. The information contained in each of the following subsections reflects general trends.
3.1 Standardization (Interoperability)
One of the enablers of widespread SOA adoption, especially in the case of WS* web services,[4] is standardization at multiple levels, as shown in Figure 3. Standardization in service-oriented systems has multiple advantages including tool support and leverage of third-party system components that in the end can lead to shorter development times.
The WS* base stack (HTTP, XML, SOAP, and WSDL) is fairly stable and has large tool support. For example, there are multiple tools that will take a web service definition language (WSDL) document as input and produce all the code necessary to invoke the associated service. However, beyond the base stack it is not that straightforward because of the over-abundance of standards. There are currently over 100 WS* standards produced by organizations such as OASIS and W3C in areas that include business process specification, composition, messaging, reliable messaging, transaction management, security, and management. Some of these standards are complementary and some are competing. In addition, many of these standards have extensions, as well as areas that can be interpreted in multiple ways [Lewis 2008a].
The Web Services Interoperability Organization (WS-I) is an organization chartered to promote web services interoperability across platforms, applications, and programming languages [WS-I 2010]. WS-I has profiles for the basic stack and for security to provide clarifications, refinements, interpretations, and amplifications in areas of the standards that are subject to multiple interpretations. There are also tools to check that artifacts (e.g., a WSDL file) and actual messages being exchanged are in conformance with the profiles. The WS-I tools are especially useful in cases in which WSDL and XML files are automatically generated and may not conform to the assumptions of the development and deployment environment, e.g., different XML schema versions, different namespaces, malformed XML, etc. The tools that facilitate the usage of these standards will be one criterion that an architect uses to select between competing standards.
Figure 3: WS* Web Services Protocol and Standards Stack
[Kindle users can magnify this graphic by navigating to it and center-clicking. Press the Kindle's Back button to return to this point.]
The following table summarizes how standardization-in aspects such as service description, service discovery, message formats, encoding, and transport-impacts quality attributes in a service-oriented system.
Table 1: Effect of Standardization
Quality Attribute: Interoperability | Effect: Positive | Explanation: Standardization in service-oriented system implementations is the primary enabler of interoperability, both across platforms and vendors. However, policies and standards have to be in place to increase interoperability through consistency (e.g., service interfaces, data models, implementation technologies, and versions of infrastructure elements). |
Quality Attribute: Modifiability | Effect: Positive | Explanation:
|
Quality Attribute: Performance | Effect: Negative | Explanation:
|
Quality Attribute: Reusability | Effect: Positive | Explanation:
|
Quality Attribute: Security | Effect: It depends | Explanation:
|
Quality Attribute: Testability | Effect: Positive | Explanation: Standardization enables the use of commercial testing tools for service-oriented environments as well as additional forms of testing that take into account that system components might not be available at design time, such as interface-based testing [Ghosh 2000]. |
3.2 Loose Coupling
Loose coupling is one of the key goals for SOA adoption. There are multiple areas where an architect can make decisions to promote loose coupling. If loose coupling is an important architectural driver, an architect should:
The following table summarizes how achieving the goal of loose coupling impacts quality attributes in a service-oriented system.
Table 2: Effect of Loose Coupling
Quality Attribute: Interoperability | Effect: Positive | Explanation: Standardization of data representation and service description inherent to service-orientation enables loose coupling of technologies chosen by different organizations that need to interoperate. |
Quality Attribute: Modifiability | Explanation: Loose coupling between service provider and service consumer enables each to change implementations independently as long as the service interface and the expected behavior of the implementation remain unchanged. Effect: Positive |
Quality Attribute: Performance | Effect: Negative | Explanation:
|
Quality Attribute: Reliability | Effect: It Depends | Explanation: Loose coupling enables service consumers to move to alternative service implementations in case of service failure; redundancy can be implemented in the case of stateless services. Self-contained services can also promote reliability by constraining the propagation of failures. However, the potential lack of control over service elements (e.g., third-party service implementations) introduces unpredictability. |
Quality Attribute: Reusability | Effect: Positive | Explanation: Because services are not bound to a particular implementation or technology, it is easier to reuse them. In addition, because of the loose coupling between services, it is easier to reuse services without worrying about the dependencies between them. However, proper service identification processes have to be in place such that all services represent independent and cohesive business/operational tasks. |
Quality Attribute: Scalability | Effect: Positive | Explanation: Because of loose coupling it is possible to create a scalable architecture in which new service instances are added on-demand to meet increased loads. |
Quality Attribute: Security | Effect: Negative | Explanation:
|
3.3 Reusability
The goal of increasing reuse in this context is mostly associated with service reusability. Services are reusable because they represent self-contained functionality that can be used in multiple business processes. If reusability is a business goal, an architect may employ the following strategies:
Promoting reusability has an impact on other quality attributes. The table below provides a general assessment of how quality attributes are impacted.
Table 3: Effect of Reusability
Quality Attribute: | Interoperability | Effect: Positive | Explanation: Service reusability also depends on providing standard interfaces to reusable service functionality, therefore increasing interoperability between service consumers and services. |
Quality Attribute: | Maintainability/Evolution | Effect: Positive | Explanation: Reusable services and other assets provide common functionality that reduces the number of instances of logic that need to be maintained. When changes are required there is usually less effort required. |
Quality Attribute: | Performance | Effect: Negative | Explanation: Techniques for promoting reusability are often at conflict with performance. Standards are often used to promote reuse between service providers and consumers that use heterogeneous technologies. The parsing of these standard formats incurs runtime overhead, which contributes to latency of single operations. |
Quality Attribute: | Reliability | Effect: It Depends | Explanation: Increased reusability means that a potentially greater number of service consumers will be affected if there are problems with a service or other reusable assets. As the number of service consumers that depend on a reusable service grows, the more important it is that the architecture has reliability mechanisms to detect and recover from failures. |
Quality Attribute: | Scalability | Effect: It Depends | Explanation: It is possible to identify services with high usage and create a scalable architecture to deal with services that have high demand. In the case of stateless services, introducing redundancy is simplified. Stateful services add an additional requirement for synchronization between two instances of the same service if they are replicated, which introduces complexity. |
Quality Attribute: | Testability | Effect: Positive | Explanation: Reusable services and other assets that have been unit tested can be reused without having to be retested. |
3.4 Composability
The end goal of composability is to be able to change pieces of a business process rapidly when the business environment changes, without impacting the consumers of the composite service that implements the business process.
Service composability depends on many of the same service characteristics as service reusability: self-contained functionality, standardized interfaces, and availability in a service registry. It also relies on proper service identification and careful service interface design. The difference between composability and reusability is that composability relies on a set of reusable services that have properties that enable them to be composed. A composition may rely heavily on infrastructure such as an orchestration engine for the choreography of services based on business workflows.
Composability introduces architectural risks that require strategies for mitigation. Below are some examples:
The following table summarizes how composability impacts quality attributes in a service-oriented system.
Table 4: Effect of Composability
Quality Attribute: Interoperability | Effect: It Depends | Explanation:
|
Quality Attribute: Performance | Effect: Negative | Explanation:
|
Quality Attribute: Reliability/ Availability | Effect: Negative | Explanation:
|
Quality Attribute: Security | Effect: Negative | Explanation: Increased composability means that services have the potential to be composed in ways that original designers never envisioned. This may cause inadvertent disclosure of sensitive information through aggregation. The classic example is when two or more pieces of "benign" data are fused together and become proprietary or classified information. |
Quality Attribute: Testability | Effect: It Depends | Explanation:
|
3.5 Discoverability
In a service-oriented environment, services are created and published in a place that is accessible to service consumers (e.g., service registry, web page, directory, etc.). Ideally, service consumers can query this service registry looking for services that satisfy desired capabilities. At a minimum, the metadata associated with a service is its interface specification or contract. Additional metadata associated with a service is commonly stored in a service repository[6] and includes attributes such as
Service discovery in practice is often done at design time. The developer of the service consumer queries the service registry at design time and obtains the necessary information in order to invoke the service. Discovery depends on the availability of the service registry as well as the quality of the information in the registry. High availability of the registry at design time is unlikely to be required and the quality of the information is a governance issue, which we will not address in this report. We will focus on the dynamic aspects of service discovery.
Dynamic service discovery refers to service discovery that happens at runtime. Unfortunately, the word dynamic is used in many ways to describe the binding between service consumers and services. There are various degrees of dynamism. The architect needs to decide the appropriate level of dynamism required to meet architecturally significant requirements. Below are some decisions relating to varying degrees of dynamism:
The following table summarizes how dynamic discovery impacts quality attributes in a service-oriented system.
Table 5: Effect of Discoverability
Quality Attribute: Interoperability | Effect: Positive | Explanation: Because of late or runtime time binding, the infrastructure can be set up to check the registry at runtime and point to different versions of a service depending on service consumer or message characteristics. |
Quality Attribute: Maintainability/Evolution | Effect: Positive | Explanation: Service registries may be set up to have pointers to different versions of services such that changes in services have minimal impact on existing service consumers. |
Quality Attribute: Performance | Effect: It Depends | Explanation: It is common for service registries to be used by service consumer developers at design time, which means that the registry would not have an impact at runtime. However, if the infrastructure is set up such that the registry is checked at runtime or the registry performs some form of selection between different versions of a service, there is an additional computation involved that affects performance. These effects can be reduced by reducing the number of times the registries need to be queried. |
Quality Attribute: Reliability | Effect: It Depends | Explanation: Because of late binding, the infrastructure can be set up to check the registry at runtime and point to alternate instances of services depending on error conditions such as service unavailability. |
Quality Attribute: Reusability | Effect: Positive | Explanation: An important benefit of a service registry that supports service discovery is reusability of services. The registry can be used so that designers can find services that fit their needs to avoid unnecessary duplication of functionality. |
Quality Attribute: Scalability | Effect: It Depends | Explanation: Because of late binding, the infrastructure can be set up such that all compatible instances of a specific service are checked at runtime for current utilization and the request is forwarded to the service that has the lowest utilization. However, if the registry has to be checked at runtime, it may become a bottleneck. |
4 Common Components of a Service-Oriented System
As shown earlier in Figure 2, the main elements of a service-oriented system are service consumers, services (interface plus implementation), and the SOA infrastructure. The SOA infrastructure plays an important role in service-oriented systems because it mediates differences between service consumers and providers therefore promoting important quality attributes such as interoperability, modifiability, and extensibility. What follows are some of the components that are commonly part of a SOA infrastructure, its supporting patterns and tactics and the impact that these components have on overall system quality.
4.1 Enterprise Service Bus
An Enterprise Service Bus (ESB) is a software pattern that can be part of a SOA infrastructure and acts as an intermediary between service consumers and service providers. Service consumers are designed to interact with the ESB and the ESB is configured to route and transform different kinds of request and response messages between service consumers and service providers. There are vendor products that implement many of the features described below in the supporting patterns and tactics section. It is important to understand that an ESB is not required in order to implement a service-oriented system. In certain contexts point-to-point integration between service consumers and providers makes sense. In homogeneous environments that are under a single organization's control, an ESB may be overkill.
4.1.1 Supporting Patterns and Tactics
ESB is a "compound" pattern that consists of the following patterns, as shown in Figure 4 [Erl 2009]:
Figure 4: ESB Patterns and Sub-Patterns (adapted from [Erl 2009])
[Kindle users can magnify this graphic by navigating to it and center-clicking. Press the Kindle's Back button to return to this point.]
4.1.2 Impact on System Quality
Table 6 and Table 7 explain respectively the negative and positive effect on different quality attributes related to the use of an ESB in a SOA solution. Not all ESB products provide all the features discussed in this report. The quality impact considerations discussed below only apply to products that provide the corresponding feature.
Table 6: ESB Aspects that Negatively Affect System Qualities
Quality Attribute: Modifiability | Explanation of Negative Effect: If the ESB performs intricate data model transformations, a substantial part of the service consumer and provider interaction logic becomes codified by the transformation rules (e.g., XSLT stylesheets). These transformation rules add to the complexity of developing and maintaining the solution. |
Quality Attribute: Performance[7] | Explanation of Negative Effect:
|
|
|
Quality Attribute: Security | Explanation of Negative Effect:
|
Quality Attribute: Availability | Explanation of Negative Effect:
|
Table 7: ESB Aspects that Positively Affect Systems Qualities
Quality Attribute: Interoperability | Explanation of Positive Effect: The ESB allows disparate systems to interoperate in spite of mismatches in data models, data representation formats, communication protocols and implementation technologies. This capability is particularly important to integrate legacy systems and silo applications that run on different platforms. |
Quality Attribute: Modifiability | Explanation of Positive Effect:
|
Quality Attribute: Reliability | Explanation of Positive Effect: When the receiver of a service request or response has failed, the ESB may queue the message until the service is available again. The internal queue of requests and responses is sometimes persistent, which yields even better reliability. |
Quality Attribute: Security | Explanation of Positive Effect: The ESB may include access control functionality. It may enforce authentication and authorization rules in service message exchanges. |
4.2 Service Registry and Repository
Service registries and repositories can be custom built, but are often provided by a product in the SOA infrastructure. Vendor products support a subset of the functionality listed below:
4.2.1 Supporting Patterns and Tactics
Some supporting patterns and tactics for service-oriented systems include:
4.2.2 Impact on System Quality
Table 8 and Table 9 explain respectively the negative and positive effect on different quality attributes related to the use of a service registry and repository in a SOA solution.
Table 8: Service Registry and Repository Aspects that Negatively Affect System Qualities
Quality Attribute: Availability | Explanation of Negative Effect:A registry that is not replicated can be a single point of failure. |
Quality Attribute: Performance | Explanation of Negative Effect:Using the registry for dynamic discovery and binding of services and consumers increases latency. |
Quality Attribute: Security | Explanation of Negative Effect:Exposing details of service metadata can provide useful information for attackers who can compromise services. |
Table 9: Service Registry and Repository Aspects that Positively Affect System Qualities
Quality Attribute: Availability | Explanation of Positive Effect: Service registries can be used at runtime (i.e., procedures to retry requests) to determine if a suitable replacement for a service that has failed can be found and invoked. |
Quality Attribute: Interoperability | Explanation of Positive Effect:
|
Quality Attribute: Modifiability | Explanation of Positive Effect:
|
Quality Attribute: Security | Explanation of Positive Effect: Consumers can query the service registry for services that provide appropriate message-level security, confidentiality, etc. |
4.3 Messaging System
A messaging system, also known as message-oriented middleware, is often part of the execution environment of enterprise applications. It allows distributed components to exchange asynchronous messages. Messaging systems have existed long before the advent of SOAP and other Web Services standards. Today they are commonly used in SOA solutions for transactions that involve background processing because they can provide high levels of scalability and reliability. In fact, messaging system capability has been embedded or integrated in many ESB products and business process engines.
4.3.1 Supporting Patterns and Tactics
In a service-oriented system, service consumers and providers can communicate via asynchronous message exchanges, which are routed via the underlying infrastructure (messaging system). The basic asynchronous messaging pattern is complemented and specialized by messaging-related patterns as shown in Figure 5. These messaging patterns applicable to service-oriented systems are just a subset of a vast collection of known enterprise integration patterns [Hohpe 2003]. Some other messaging patterns can include:
Figure 5: Asynchronous Messaging Pattern, Specializations, and Sub-Patterns
[Kindle users can magnify this graphic by navigating to it and center-clicking. Press the Kindle's Back button to return to this point.]
4.3.2 Impact on System Quality
Table 10 and Table 11 discuss how different quality attributes of a SOA solution are negatively and positively affected by the use of a messaging system.
Table 10: Messaging System Aspects that Negatively Affect System Qualities
Quality Attribute: Interoperability | Explanation of Negative Effect: The use of the same API for implementing the message producing and message consuming code (e.g., JMS API in the Java world) does not guarantee interoperability. The message producer and the message consumer services have to use locally the same messaging system product or compatible products. Most messaging systems products use proprietary wire protocols for communication. The alternative is to introduce a bridge connector. For example, a service running on a platform that contains Microsoft MQ can send a message to an IBM MQSeries destination queue on a different computer through an MSMQ-MQSeries bridge. Some ESB products provide this bridging capability. |
Quality Attribute: Modifiability | Explanation of Negative Effect:
|
Quality Attribute: Performance | Explanation of Negative Effect: Going through the messaging system incurs an overhead in the overall processing due to queue processing delays and persisting messages in the queue. Thus, messaging systems are more advisable when there are no stringent timing requirements for message processing. |
Quality Attribute: Reliability | Explanation of Negative Effect: Atomic transactions that embody tasks activated via asynchronous messages are often infeasible. |
Table 11: Messaging System Aspects that Positively Affect System Qualities
Quality Attribute: Interoperability | Explanation of Positive Effect:
|
Quality Attribute: Modifiability | Explanation of Positive Effect: If the service consumer and provider can communicate via messages it is easier to insert a mediator of that interaction. |
Quality Attribute: Performance | Explanation of Positive Effect:
|
Quality Attribute: Reliability | Explanation of Positive Effect: Many messaging systems offer reliable messaging with persistent queues and guaranteed delivery of messages. |
Quality Attribute: Scalability and Availability | Explanation of Positive Effect:
|
4.4 Business Process Engine
A business process engine is a software component responsible for processing incoming requests by performing the steps of the business process that correspond to that request. These steps typically involve calling one or more services. Part of the business process engine solution is a business process modeling (BPM) tool that allows the description, and often visualization, of a business process. The BPM tool then generates a business process[9] that is deployed to and executed by the business process engine when processing requests.
The services that participate in the execution of the business process do not interact directly with each other; they interact with the business process engine that coordinates the execution. Because of this coordination role, the business process engine is often called an orchestration engine or orchestration server. A business process engine may or may not be part of the SOA infrastructure, but if it is not, the business process has to be coded manually as part of the service implementation or in the service consumer.
4.4.1 Supporting Patterns and Tactics
The business process engine follows the SOA design pattern called orchestration [Erl 2009]. This pattern is a compound pattern-it results from the combination of four other patterns, as shown in Figure 6.
Figure 6: Orchestration Pattern and Sub-Patterns (Adapted from [Erl 2009])
[Kindle users can magnify this graphic by navigating to it and center-clicking. Press the Kindle's Back button to return to this point.]
The four patterns that make up the compound orchestration pattern are:
In addition to service orchestration, some business process engine products have capabilities that promote interoperability. These products implement the following patterns, which were discussed in Section 4.1.1:
4.4.2 Impact on System Quality
Table 12 and Table 13 discuss the negative and positive effects in different quality attributes when a business process engine is used in a SOA solution.
Table 12: Business Process Engine Aspects that Negatively Affect System Qualities
Quality Attribute: Modifiability | Explanation of Negative Effect:
|
Quality Attribute: Performance | Explanation of Negative Effect: Upon the specific event that triggers a business process, the business process engine executes the business process and intermediates the interaction of the participating services. That orchestration role incurs a performance overhead. |
Quality Attribute: Security | Explanation of Negative Effect:
|
Table 13: Business Process Engine Aspects that Positively Affect System Qualities
Quality Attribute: Interoperability | Explanation of Positive Effect: Some business process engines are capable of interacting with services through different protocols (e.g., SOAP over HTTP, SMTP, JMS) and therefore promote seamless integration of these disparate services. |
Quality Attribute: Modifiability | Explanation of Positive Effect:
|
Quality Attribute: Reliability | Explanation of Positive Effect: Business process engines have built-in fault handling mechanisms. Besides, the business process workflow is executed strictly based on the business process model usually created using a BPM tool. Thus, a business process that uses a business process engine should be more reliable and less error-prone than a custom-developed workflow application. |
4.5 Monitoring and Management Tools
Software monitoring and management tools are a group of tools that enable organizations to detect, diagnose, and react to potential problems in applications-these tools are often part of ESB products. SOA monitoring and management tools enable organizations to monitor and manage service-oriented systems. These tools are used for runtime monitoring to provide information that can be used to maintain system quality of service and to inform tactics and patterns such as
4.5.1 Supporting Patterns and Tactics
The set of tactics used for monitoring service-oriented systems includes
4.5.2 Impact on System Quality
Table 14 and Table 15 discuss the negative and positive effects in different quality attributes when a business process engine is used in a SOA solution.
Table 14: Monitoring and Management Tools Aspects that Negatively Affect System Qualities
Quality Attribute: Performance | Explanation of Negative Effect: There are many techniques (i.e., ping, heartbeat, and synthetic transactions) that are used for monitoring that consume system resources such as memory, processing cycles and network bandwidth. If not designed carefully, these monitoring messages may have a negative effect on the overall throughput. |
Table 15: Monitoring and Management Tools Aspects that Positively Affect System Qualities
Quality Attribute: Availability | Explanation of Positive Effect: The monitoring tool can detect failures and notify the appropriate system artifacts to act in response to the failure (e.g., switching to a redundant software element or hardware). |
Quality Attribute: Performance | Explanation of Positive Effect: Monitoring and management tools can be used to identify services that may be overloaded. New instances of service consumers can be dynamically created and the excess requests can be transparently routed to ensure proper load balancing. |
Quality Attribute: Reliability | Explanation of Positive Effect: Synthetic transactions can be used to determine that services are accurately servicing requests or complying with policies. |
5 Conclusions
Service-oriented architecture (SOA) is an architectural style for designing and developing distributed systems. Drivers for SOA adoption typically include easy and flexible integration with legacy systems, streamlined business processes, reduced costs, innovative service to customers, and agility to handle rapidly changing business processes. From an architectural and quality attribute perspective these drivers usually translate to interoperability and modifiability, which are achieved by adhering to a set of architectural principles for service-oriented systems such as loose coupling, standardization, reusability, composability, and discoverability. However, promoting interoperability and modifiability as well as adhering to these principles requires architects to make architectural decisions based on tradeoffs with other quality attributes that may be important to system stakeholders, or defined by SOA governance, such as availability, reliability, security, and performance.
Between 2005 and 2007, multiple surveys were conducted by organizations such as Forrester, Gartner, and IDC that showed that the top drivers for SOA adoption were mainly internally focused: these top drivers generally included application integration, data integration, and internal process improvement. This is changing. A recent survey published by Forrester shows that the number of organizations currently using SOA for external integration is approximately one third of the surveyed organization [Forrester 2009]. While the percentage of externally focused SOA applications is still a minority, this percentage has been growing and the trend will continue as organizations look at SOA adoption for supply-chain integration, access to real-time data, and cost reduction through the use of third-party services via the cloud or software-as-a-service (SaaS). As organizations expand their systems to cross organizational boundaries, architects will have to re-evaluate the use of SOA as an architectural style in these systems. They may need to architect their systems in such a way that qualities are met without having to sacrifice the loosely coupled, stateless, standards-based nature of the relationship between service consumers and service providers' characteristics that have made SOA a worthwhile technology to adopt.
In essence, as an architectural style, SOA may be an appropriate solution in some situations, but there will be other situations in which it is not appropriate or it has to be used in conjunction with other technologies to achieve the desired system qualities. The architect is often at conflict because on one hand there are business and mission goals that dictate the quality attributes that are important for system success. On the other hand, the architect using service-orientation wants to adhere to SOA principles and leverage SOA to its advantage and find out that it makes it difficult to achieve quality goals. The information provided in this report illustrates some of these conflicts and should help an architect navigate the underlying implications and provide reasons to be selective and deliberate in the architecting process. The architects of service-oriented systems play a crucial role in determining what expectations can or cannot be met by SOA adoption, and where tradeoffs can be made for the benefit of the organization and the accomplishment of system quality attributes.
Footnotes
[1] http://apsblog.burtongroup.com/2009/01/soa-is-dead-long-live-services/comments/page/2/
[2] We use the term service-oriented system to separate SOA as a set of technologies from service-orientation as a system or approach that incorporates and applies SOA-related concepts and technologies.
[3] Figure 2 is a much more generic representation of the elements shown in Figure 1. The goal of Figure 2 is to illustrate the four major elements of a service-oriented system, independent of implementation technologies.
[4] In WS-* Web services, (1) data is represented using XML, (2) service interfaces are described using Web Services Description Language (WSDL), (3) payload is transmitted using Simple Object Access Protocol (SOAP) over Hypertext Transfer Protocol (HTTP), and, optionally, (4) Universal Description, Discovery and Integration (UDDI) is used as the directory service. In addition, although not part of the basic implementation, there are over 100 standards to support other system qualities such as WS-Security for security and WS-ReliableMessaging for reliability.
[5]Infrastructure components are elements the SOA infrastructure shown in Figure 2. Examples of an infrastructure component include ESB, service registry, load balancer, and monitoring tools.
[6] Even though service registry and service repository are often used interchangeably, we use service registry to describe a system element similar to a searchable directory and service repository to describe a system element that stores additional metadata and artifacts associated with services registered in the service registry.
[7] It is important to note that performance is not always about overhead. Some additional overhead is acceptable if predictable performance is attained. There are many fine-grained decisions that affect predictability such as service design, message size, operating systems, and protocols.
[8] The correlation identifier is not part of the service input or output data; it is added to the header (as message metadata) rather than to the body of the message.
[9] The BPM tool stores the business process specification in a given language (for example, web services business process execution language (WS-BPEL)). For deployment to the process engine, the business process may be compiled into a different language used by the business process engine.
References
URLs are valid as of the publication date of this document.
[Afshar 2007]
Afshar, M. SOA Governance: Framework and Best Practices, Version 1.1. Oracle, May 2007.
[AMQP 2010]
AMQP Working Group. Advanced Message Queuing Protocol 1.0 recommendation draft. Accessed March 31, 2011.
[Arsanjani 2004]
Arsanjani, Ali. Service-oriented modeling and architecture. November 2004.
[Bass 2003]
Bass, Len; Clements, Paul; & Kazman, Rick. Software Architecture in Practice. Addison-Wesley Professional, 2003.
[Bianco 2007]
Bianco, Phil; Kotermanski, Rick; & Merson, Paulo. Evaluating a Service-Oriented Architecture (CMU/SEI-2007-TR-015). Carnegie Mellon University, Software Engineering Institute, 2007.
[Bieberstein 2008]
Bieberstein, Norbert; Jones, Keith; Laird, Robert G.; & Mitra, Tilak. Executing SOA: A Methodology for Service Modeling and Design. July 2008.
[Buschmann 1996]
Buschmann, F.; Meunier, R.; Rohnert, H.; Sommerlad, P.; & Stal, M. Pattern-Oriented Software Architecture Volume 1: A System of Patterns. Wiley, 1996.
[Chappell 2004]
Chappell, D. Enterprise Service Bus. O'Reilly, June 2004 (ISBN 0-596-00675-6).
[Clements 2010]
Clements, Paul; Bachmann, Felix; Bass, Len; Garlan, David; Ivers, James; Little, Reed; Merson, Paulo; Nord, Robert; & Stafford, Judith A. Documenting Software Architectures: Views and Beyond, 2nd Edition. Addison-Wesley, 2010.
[Erl 2008]
Erl, Thomas. SOA: Principles of Service Design. Prentice Hall, 2008 (ISBN: 0-13-234482-3).
[Erl 2009]
Erl, Thomas. SOA Design Patterns. Prentice Hall, 2009.
[Forrester 2009]
Forrester Research. Enterprise and SMB Software Survey, North America and Europe, Q4 2008, 2009.
[Gamma 1994]
Gamma, E.; Helm, R.; Johnson, R.; & Vlissides, J. Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley Professional, 1994.
[Ghosh 2000]
Ghosh, S. Testing Component-Based Distributed Applications. Purdue University, USA. 2000.
[Hohpe 2003]
Hohpe, Gregor & Woolf, Bobby. Enterprise Integration Pattern. Addison-Wesley, October 2003.
[Juric 2004]
Juric, M. B.; Kezmah, B.; Hericko, M.; Rozman, I.; & Vezocnik, I. "Java RMI, RMI tunneling and Web services comparison and performance analysis." SIGPLAN Not. 39, 5 (May 2004): 58-65. DOI= http://doi.acm.org/10.1145/997140.997146
[Lewis 2005]
Lewis, Grace & Wrage, Lutz. A Process for Context-Based Technology Evaluation (CMU/SEI 2005-TN-025). Carnegie Mellon University, Software Engineering Institute, 2005.
[Lewis 2007]
Lewis, Grace; Morris, Ed; Simanta, Soumya; & Wrage, Lutz. "Common Misconceptions about Service-Oriented Architectures." Proceedings of the 6th IEEE International Conference on COTS-Based Software Systems (ICCBSS 2007), February 2007.
[Lewis 2008a]
Lewis, Grace, et. al. Why Standards Are Not Enough To Guarantee End-to-End Interoperability. Seventh International Conference on Composition-Based Software Systems (ICCBSS 2008), 2008, pp. 164-173.
[Lewis 2008b]
Lewis, G.; Morris, E.; Smith, D.; & Simanta, S. SMART: Analyzing the Reuse Potential of Legacy Components in a Service-Oriented Architecture Environment (CMU/SEI-2008-TN-008). Carnegie Mellon University, Software Engineering Institute, 2008.
[Morris 2010]
Morris, Ed; Anderson, Bill; Balasubramaniam, Sriram; Carney, David; Morley, John; Place, Pat; & Simanta, Soumya. Testing in SOA Environments (CMU/SEI-2010-TR-011). Carnegie Mellon University, Software Engineering Institute, 2010.
[OASIS 2006]
OASIS. Web Services Security: SOAP Message Security 1.1 (WS-Security 2004). 2006.
[OASIS 2007]
OASIS. Web Services Reliable Messaging (WS-ReliableMessaging) Version 1.1.
[OMG 2009a]
Object Management Group. Business Process Model and Notation (BPMN) Version 2.0 Beta 1. August 2009.
[OMG 2009b]
Object Management Group. Service-Oriented Architecture Modeling Language (SoaML)-Specification for the UML Profile and Metamodel for Services (UPMS) Version 1.0 Beta 2 . December 2009.
[Simanta 2009]
Simanta, Soumya; Morris, Edwin J.; Lewis, Grace; Balasubramaniam, Sriram; & Smith, Dennis B. A Scenario-Based Technique for Developing SOA Technical Governance (CMU/SEI-2009-TN-009). Carnegie Mellon University, Software Engineering Institute, 2009.
[SOA Methodology 2010]
SOA Methodology. SOA Methodology. 2010.
[Stomp 2010]
Stomp Protocol Specification, Version 1.0 . 2010.
[Sullivan 2009]
Sullivan, B. XML "Denial of Service Attacks and Defenses." MSDN Magazine (November 2009).
[TOG 2006]
The Open Group (TOG). The Open Group Architecture Framework (TOGAF). 2006.
[White 2004]
White, Stephen A. Introduction to BPMN. May 2004.
[WS-I 2010]
WS-I. Web Services Interoperability Organization. (2010).
[zur Muehlen 2008]
zur Muehlen, Michael. How much BPMN do you need? March 2008.
Legal/Copyright
Copyright 2011 Carnegie Mellon University.
This material is based upon work supported by United States Department of Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the United States Department of Defense.
This report was prepared for the
SEI Administrative Agent
ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2100
NO WARRANTY
THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
This material has been approved for public release and unlimited distribution except as restricted below.
Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal use is granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.
External use:* This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other external and/or commercial use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.
For information about SEI publications, please visit the library on the SEI website.
* These restrictions do not apply to U.S. government entities.
REPORT DOCUMENTATION PAGE | Form Approved | ||||
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. | |||||
1. agency use only (Leave Blank) | 2. report date August 2011 | 3. report type and dates covered Final | |||
4. title and subtitle Architecting Service-Oriented Systems | 5. funding numbers FA8721-05-C-0003 | ||||
6. author(s) Philip Bianco, Grace A. Lewis, Paulo Merson, Soumya Simanta | |||||
7. performing organization name(s) and address(es) Software Engineering Institute | 8. performing organization CMU/SEI-2011-TN-008 | ||||
9. sponsoring/monitoring agency name(s) and address(es) HQ ESC/XPK | 10. sponsoring/monitoring agency report number | ||||
11. supplementary notes | |||||
12a distribution/availability statement Unclassified/Unlimited, DTIC, NTIS | 12b distribution code | ||||
13. abstract (maximum 200 words) Service orientation is an approach to software systems development that has become a popular way to implement distributed, loosely coupled systems, because it offers such features as standardization, platform independence, well-defined interfaces, and tool support that enables legacy system integration. From a quality attribute point of view, the primary drivers for service orientation adoption are interoperability and modifiability. However, a common misconception is that an architecture that uses a service-oriented approach can achieve these qualities by simply putting together a set of vendor products that provide an infrastructure and then using this infrastructure to expose a set of reusable services to build systems. In reality, there are many architectural decisions that need to be made. An architectural decision that promotes interoperability or modifiability can negatively impact other qualities, such as availability, reliability, security and performance. The goal of this report is to present general guidelines for architecting service-oriented systems, how common service-oriented system components support these principles, and the effect that these principles and their implementation have on system quality attributes. | |||||
14. subject terms Service-oriented architecture, system architecture, quality attributes | 15. number of pages 46 | ||||
16. price code | |||||
17. security classification of report Unclassified | 18. security classification of this page Unclassified | 19. security classification of abstract Unclassified | 20. limitation of abstract UL | ||
NSN 7540-01-280-5500 | Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102 |
Table of Contents
2.1 SOA Design Patterns
2.2 Evaluating SOA
2.3 SOA Layers
3 SOA Architectural Principles
3.1 Standardization (Interoperability)
3.2 Loose Coupling
3.3 Reusability
3.4 Composability
3.5 Discoverability
4 Common Components of a Service-Oriented System
4.1 Enterprise Service Bus
4.1.1 Supporting Patterns and Tactics
4.1.2 Impact on System Quality
4.2 Service Registry and Repository
4.2.1 Supporting Patterns and Tactics
4.2.2 Impact on System Quality
4.3 Messaging System
4.3.1 Supporting Patterns and Tactics
4.3.2 Impact on System Quality
4.4 Business Process Engine
4.4.1 Supporting Patterns and Tactics
4.4.2 Impact on System Quality
4.5 Monitoring and Management Tools
4.5.1 Supporting Patterns and Tactics
4.5.2 Impact on System Quality