A Systematic Method for Big Data Technology Selection

John Klein

Software Solutions Conference 2015
November 16–18, 2015
Copyright 2015 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract
No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering
Institute, a federally funded research and development center.

References herein to any specific commercial product, process, or service by trade name, trade mark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or
favoring by Carnegie Mellon University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[Distribution Statement A] This material has been approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests
for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM-0003040
Agenda

Background

Problem

Method

Results and Lessons Learned
Background – Two Providers, Two EHR Systems

Military Health System
- Supports 9.7 million people – active duty, dependents, retirees
- Global – 700+ hospitals, clinics, and other facilities
 - 135,000 employees, $49B per year
- Electronic Health Record system
 - Multiple legacy systems, over 100 application interfaces
 - 1PB+ data, 99 year data retention

Veterans Health Administration
- 6 million patients
- 153 VA medical centers, 1,300+ outpatient clinics and centers
- Single Electronic Health Record system (VistA)
 - Local customizations and extensions
3.5 million shared patients

Multiple interoperation projects since 2001

- Federal Health Information Exchange (FHIE)
- Bidirectional Health Information Exchange (BHIE)
- Clinical Data Repository/Health Data Repository (CHDR) interface
- Laboratory Data Sharing Interface (LDSI)
Background – Interagency Project Office (IPO)

Created by 2008 NDAA to be single point of accountability for electronic health record integration

Initially planned to develop new Integrated EHR (iEHR) for MHS and VHA

Redirected in Feb. 2013

- VHA to continue VistA evolution
- MHS to acquire COTS solution (DHMSM)
Background – Interagency Project Office (IPO)

Created by 2008 NDAA to be single point of accountability for electronic health record integration

Initially planned to develop new Integrated EHR (iEHR) for MHS and VHA

Redirected in Feb. 2013
- VHA to continue VistA evolution
- MHS to acquire COTS solution (DHMSM)
TATRC/SEI Partnership

U.S. Army's Telemedicine & Advanced Technology Research Center
- U.S. Army Medical Research and Materiel Command (USAMRMC) Lab
- www.tatrc.org

TATRC Advanced Concepts Team engaged SEI to help them support the IPO
The IPO’s Problem

We’ve got “Big Data”
A best practice for big data systems is to use a NoSQL data store
Is NoSQL* a good fit for our system?
If so, can we narrow down the COTS product trade space?

* NoSQL – category of data stores that provide high scalability and performance by partitioning and replicating data across a cluster of servers, characterized by no schema on writes and simple read/query interfaces.
Big Data Technology Evaluation Challenges

“Convergence of Concerns”
• Data store technology and system architecture are intertwined
• Can’t defer technology selection

Rapidly changing technology landscape
• New products emerging, multiple releases per year on existing products
• Need to balance speed with precision

Large potential solution space
• Need to quickly narrow down and focus

Scale makes full-fidelity prototyping impractical
• Data sets, compute nodes, load generation

Technology is highly configurable
• Need to focus on go/no-go criteria
SQL’s single system abstraction produces strong separation of concerns between application and database.

Petascale systems are changing architecture principles by creating convergence of concerns:

- Can’t abstract away underlying technology and topology - application, data, and deployment topology are tightly coupled.
- Data layer decisions drive system architecture.
- Need to select technology early in the development cycle – decision becomes embedded in the architecture and is hard to change.

http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=90909
“Convergence of Concerns”

SQL’s single system abstraction produces strong separation of concerns between application and database. Petascale systems are changing architecture principles by creating *convergence of concerns*

- Can’t abstract away underlying technology and topology - application, data, and deployment topology are tightly coupled.
- Data layer decisions drive system architecture.
- **Need to select technology early in the development cycle** – decision becomes embedded in the architecture and is hard to change.

http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=90909
Solution Space – The NoSQL Landscape

Evaluation Method – Lightweight Evaluation and Architecture Prototyping for Big Data (LEAP4BD)
Evaluation Method – LEAP4BD

Lightweight Evaluation and Architecture Prototyping for Big Data (LEAP4BD)

Aims

• Risk reduction
• Rapid, streamlined selection/acquisition

Steps

• Assess the system context and landscape
• Identify the architecturally-significant requirements and decision criteria
• Evaluate candidate technologies against quality attribute decision criteria
• Validate architecture decisions and technology selections through focused prototyping
Assess the existing and future data landscape

Identify the application’s fundamental data holdings, their relationships,
Identify most frequent queries and access patterns
Identify required performance and quantifies expected data and transaction growth

Output:

• The scope and context for the rest of the analysis and evaluation
• Initial insights into the suitability of a range of NoSQL candidates to support the application’s requirements
Identify the architecturally-significant requirements and develop decision criteria

Focus on scalability, performance, security, availability, and data consistency

Engage with stakeholders to characterize the application’s quality attribute requirements

• Quality Attribute Workshop
• Stakeholder interviews

Combine these architecture requirements with the characteristics of the data model (from previous step) to generate the necessary information for initial architecture design and technology selection
Evaluate candidate technologies against quality attribute decision criteria

Identify and evaluate candidate Big Data technologies against the applications’ data and quality attribute requirements

Selects a small number of candidates (typically two to four) for validation through prototyping and testing
LEAP4BD Knowledge Base – http://quabase.sei.cmu.edu

Form-based queries

Tabular and graphical reports
Validate architecture decisions and technology selections

Perform focused prototyping

• Go/no-go criteria

Evaluate the prototype’s behavior against a set of carefully designed, application-specific criteria (e.g., performance, scalability, etc.)

• Generate concrete evidence that can support the downstream investment decisions required to build, operate, and evolve the system

• Qualitative evidence
 • Data model fit, deployment options, etc.

• Quantitative evidence
 • Sensitivities and inflection points, look for trends rather than absolutes
Applying LEAP4BD with TATRC for the IPO
Requirements - Driving Use Cases

Conducted stakeholder workshop
Query – Retrieve the 5 latest medical test results for a patient
 • Used to populate many application UI screens
Strong consistency on updates – all readers see the same data when a new test result is written
 • Within a facility
 • Across facilities – telemedicine, real time consultations
Core Workload – 80% read/20% write
 • Also assessed a write-only workload for pre-loading a facilities cache with records for scheduled patient appointments
Select Candidate Technologies

IPO wanted to understand implications and differences among different NoSQL technologies for their application. Selected one representative from each NoSQL category (key-value, wide column, document, and graph store). Based on feature screening and market leadership, we chose:

- Riak (key-value)
- Cassandra (wide column)
- MongoDB (document)

Did not prototype and evaluate any graph store – none had horizontal partitioning needed to support the scalability requirements.
Test Design and Execution

Running in SEI Virtual Private Cloud (Amazon Web Services)
- Typical configuration – 12 virtual machines, peaked 35 active virtual machines over multiple configurations

SEI/TATRC ACT Collaboration
- SEI – Infrastructure management, experiment planning, analysis and synthesis of results
- TATRC ACT – database installation and configuration, workload development and test execution

Defined consistent environment - Server platform, test client platform, deployment topology

Mapped application’s logical data model onto each database and load database

Defined test client to perform desired workloads, and measure and collect performance data
Typical Test Results – Throughput
(3x3 configuration, read-only workload)
Typical Test Results – Throughput
(3x3 configuration, write-only workload)
Typical Test Results – Throughput
(3x3 configuration, read/write workload)
Test Results – “Cost of Strong Consistency” (Cassandra data store)
LEAP4BD Outcomes

Focus on the data storage and access services addresses the major risk areas for an application

• Keeps the method lean, rapidly produces design insights that become the basis for downstream decisions

Highly transparent and systematic analysis and evaluation method significantly reduces the burden of justification for the necessary investments to build, deploy, and operate the application

• Data-driven decisions

Informed adoption of modern technologies to reduce costs while ensuring that an application can satisfy its quality attribute requirements

Increased confidence in architecture design and database technology selection

• Hands-on experience working with the technology during prototype development, reduces development risks

Identifies risks that must be mitigated in design and implementation, along with detailed strategies and measures that allow for continual assessment
Key SEI Capabilities that Contributed to Project Success

Domain
- Healthcare IT
- Technology Evaluation

Technology
- Big Data
- Distributed Systems
- Cloud

Facilities
- Virtual Private Cloud
Contact Information

John Klein
Senior Member of the Technical Staff
Architecture Practices
+1 412-268-7700
jklein@sei.cmu.edu

U.S. mail:
Software Engineering Institute
Customer Relations
4500 Fifth Avenue
Pittsburgh, PA 15213-2612
USA

World Wide Web:
www.sei.cmu.edu
www.sei.cmu.edu/contact.html

Customer Relations
customer-relations@sei.cmu.edu
+1 412-268-5800