Key message

- Instead of designing a concrete solution we design a solution space

- Solution space represents a set of all possible solutions under given assumptions, constraints and design rules

- We use complexity metrics and decision trees to identify decision rules which result in a viable Global SOA
Agenda

- Introducing Credit Suisse
- SOA @ Credit Suisse
- Global SOA
- Related work
- How to build global SOA
- Roadmap
Credit Suisse is a leading global bank headquartered in Zurich. It is focused on serving its clients in three business lines: investment banking, private banking and asset management. Credit Suisse is renowned for providing expert advice, holistic solutions and innovative products to a wide range of corporate and institutional clients and high-net-worth individuals globally, as well as retail clients in Switzerland.
Credit Suisse locations
Credit Suisse vs. peers: December 31, 2010

Market Capitalization, USD bn

<table>
<thead>
<tr>
<th>Bank</th>
<th>Market Capitalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>JPMorgan Chase</td>
<td>165</td>
</tr>
<tr>
<td>Citigroup</td>
<td>138</td>
</tr>
<tr>
<td>Bank of America</td>
<td>134</td>
</tr>
<tr>
<td>Goldman</td>
<td>91</td>
</tr>
<tr>
<td>Sachs</td>
<td>63</td>
</tr>
<tr>
<td>UBS</td>
<td>48</td>
</tr>
<tr>
<td>Deutsche Bank</td>
<td>48</td>
</tr>
<tr>
<td>Credit Suisse Morgan</td>
<td>48</td>
</tr>
<tr>
<td>Morgan Stanley</td>
<td>41</td>
</tr>
</tbody>
</table>

B/S Assets, CHF bn

<table>
<thead>
<tr>
<th>Bank</th>
<th>B/S Assets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsche Bank</td>
<td>2,387</td>
</tr>
<tr>
<td>Bank of America</td>
<td>2,123</td>
</tr>
<tr>
<td>JPMorgan</td>
<td>1,985</td>
</tr>
<tr>
<td>Chase</td>
<td>1,795</td>
</tr>
<tr>
<td>Citigroup</td>
<td>1,317</td>
</tr>
<tr>
<td>UBS</td>
<td>1,175</td>
</tr>
<tr>
<td>Credit Suisse</td>
<td>1,032</td>
</tr>
<tr>
<td>Goldman</td>
<td>854</td>
</tr>
<tr>
<td>Sachs</td>
<td>757</td>
</tr>
</tbody>
</table>

Assets under Management, CHF bn

<table>
<thead>
<tr>
<th>Bank</th>
<th>Assets under Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>UBS</td>
<td>2,152</td>
</tr>
<tr>
<td>Deutsche Bank</td>
<td>1,477</td>
</tr>
<tr>
<td>Credit Suisse</td>
<td>1,253</td>
</tr>
<tr>
<td>JPMorgan</td>
<td>1,217</td>
</tr>
<tr>
<td>Chase</td>
<td>788</td>
</tr>
<tr>
<td>Goldman</td>
<td>709</td>
</tr>
<tr>
<td>Sachs</td>
<td>604</td>
</tr>
</tbody>
</table>

Employees - Number of FTEs, t

<table>
<thead>
<tr>
<th>Bank</th>
<th>Employees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bank of America</td>
<td>287</td>
</tr>
<tr>
<td>Citigroup</td>
<td>260</td>
</tr>
<tr>
<td>JPMorgan</td>
<td>240</td>
</tr>
<tr>
<td>Chase</td>
<td>102</td>
</tr>
<tr>
<td>Deutsche Bank</td>
<td>65</td>
</tr>
<tr>
<td>UBS</td>
<td>63</td>
</tr>
<tr>
<td>Morgan</td>
<td>50</td>
</tr>
<tr>
<td>Stanley</td>
<td>36</td>
</tr>
</tbody>
</table>

1) IFRS accounting standards
2) Citigroup does no longer disclose any information on AuM

Produced by: Claudio Jossen, Roberto di Paolo, Tarmo Pлом
Date: 15.04.11 Slide 6
Agenda

- Introducing Credit Suisse
- **SOA @ Credit Suisse**
- Global SOA
- Related work
- How to build global SOA
- Roadmap
IT Complexity @ Credit Suisse

- Very large scale
 - ca 6000 applications
 - more than 100 000 000 LOC code

- High complexity
 - Large number of tightly coupled components

- Aging
 - parts of the system are becoming obsolete and must be replaced (obsolete technology, end-of-life applications)

- High change rate
 - more than 3000 production changes per week

- Demanding operational quality
 - systems must have high reliability, good availability, sufficient security etc.

=> SOA approach to manage complexity in the IT-landscape
Managed Services

- Managed services
 - Clearly defined operation signature or message/record structure
 - Usage of typed attributes with documented semantics
 - Usage of standard middleware

- Managed service categories
 - Synchronous services
 - Asynchronous messaging
 - Bulk (asynchronous communication)

- KPI-s
 - ca 1200 managed synchronous services
 - ca 10 managed bulk services
Global target operating model

Investment Bank **Private Bank**

- **Client Booking and Advisory**
 - Separation of client books and records from firm books
 - Anonymization of client data at source
 - Confidential client data sequestered in “home” booking entity

- **Product Processing**
 - Single system per product, deployed in “best” location for the Bank
 - Client-independent processing
 - Multiple entity capable, supporting ‘trade anywhere, book anywhere’
 - Repository of transaction data and product positions
 - Potentially separate legal entity for processing

- **Risk mgmt and Financial control**
 - Consolidated product positions
 - Consistent reference data, pricing and models
 - Consolidated cash and securities accounting

Shared Components
- Reference data federated to appropriate areas
- Based on common ‘meta-architecture’
- Single, common, standards-based messaging platform

Infrastructure
- Rigorous adherence to platform standards
- No compromise on resiliency/availability
- Scalability is a must

Produced by: Claudio Jossen, Roberto di Paolo, Tarmo Ploom
Date: 15.04.11 Slide 10
Agenda

- Introducing Credit Suisse
- SOA @ Credit Suisse
 - Global SOA
- Related work
- How to build global SOA
- Roadmap
3 Main dimensions of SOA

- **Logical view**
 - Main area of IT architecture governance
 - There are lots of existing assets to rely on, e.g. design guidelines
 - Hard to change but very sustainable on the long run

- **Security view**
 - Essential for any international company (due to external/internal policies and law)

- **Infrastructure view**
 - Mostly solved on a local or even regional level
 - Adjustable through central IT strategy and respective investments
7 sub dimensions of local SOA

- **Logical view**
 - Orchestration variability

- **Security view**
 - Authentication: no, week, strong
 - Authentication systems variability
 - Authorization systems variability
 - Trust zones

- **Infrastructure view**
 - Middleware variability
 - Executables distribution variability
21 sub-dimensions in global SOA

- **Logical view** (additional sub-dimensions of global SOA)
 - Business process variability
 - Workflow variability
 - Federation variability
 - Business rule variability
 - Service variability
 - Meta-/Data variability

- **Security view** (additional sub-dimensions of global SOA)
 - Identity management: central vs. federated
 - Role management: central vs. federated
 - Standardized realms vs. non-standardized realms
 - Legal data flow restrictions

- **Infrastructure view** (additional sub-dimensions of global SOA)
 - Executables reuse globally
 - Middleware reuse globally
 - Registry, repository, BPMS and BRMS distribution & visibility
 - Service namespaces
Complexity explosion

- 21 different complexity dimensions by global SOA
 - If each dimensions has four variants than overall 4^{20} (ca 10^{12}) solution options

- Lets make the assumption that logical, security and infrastructure views are independent

- In above example
 - 4^7 (16384) variants for logical view
 - 4^8 (65536) variants in security view
 - 4^6 (4096) variants in infrastructure view

- How long would it take time to find solutions from 4^7 options?
 - If we use 1 minute per option then we need 34 months
How to build global SOA in finite time?
Agenda

- Introducing Credit Suisse
- SOA @ Credit Suisse
- Global SOA
- Related work
- How to build global SOA
- Roadmap
Overview of related work

- **SOA Layering**
 - Macro flow composition layer, macro flow integration layer, dispatching layer, micro flow execution layer [Zdun]
 - Enterprise layer, process layer, intermediary layer, basic layer [Slama]

- **Decision models**
 - ATAM [ATAM]
 - Architectural decision models [Zimmermann]

- **Ultra large scale systems**
 - ULS [SEI]

- **Socio technical systems view**
 - Interactions of people and technology at the workplace in the organizational context
Agenda

- Introducing Credit Suisse
- SOA @ Credit Suisse
- Global SOA
- Related work
- How to build global SOA
- Roadmap
Solution space overview

- Usually architecture focuses on design of a concrete solution
 - In focus is finding of "the best" solution in given assumptions and constraints
 - Usage of decision trees or tradeoff analysis (ATAM)

- Instead of designing "the best" solution we focus on the design of "the best" solution space.

- An optimal solution space represents set of all possible solutions which are possible under
 - given assumptions
 - design constraints
 - design rules
Global SOA solution space

- **Solution space**
 - Set of all possible solutions to a given problem.
 - Set of solutions that satisfies all assumptions, constraints and design rules.

- **Global SOA solution space**
 - Solution space defines of all possible theoretical solutions under given assumptions, constraints and rules
 - Complexity of solution space is the maximum complexity of solution

- **Each SOA (sub-)dimension has a set of complexity functions**
 - Complexity function represents all possible variants of a dimension
 - Mathematical or graphical representation

- **All complexity function sets build a function space – the Global SOA Solution Space**
 - Solution space defines of all possible theoretical solutions
 - Complexity of solution space is the maximum complexity of solution
Maximum complexity

- Solution space can be represented as a graph which represents all possible solutions.
- To measure variety of such a graph we use cumulative component dependency (CCD) [Lakos] which measures the number of traversal paths in a graph. Also we make the assumption that probabilities for the occurrence of each traversal path are equal.
- CCD is related to system entropy

\[S = -k \sum_i P_i \ln P_i \]

- We define maximum complexity of the system as the maximum CCD (MCCD) which is possible under a given design rules.

\[\text{MCCD} = f \text{ (design rules)} \]

=> Design rule which results in smaller maximum complexity is preferred over design rule with higher maximum complexity.
Global SOA decision tree

Business Constraints
- Unpredictable
- Highly flexible
- Root of the tree

Design rules
- Defined by IT architecture
- Detailed subtrees

Produced by: Claudio Jossen, Roberto di Paolo, Tarmo Ploom
Date: 15.04.11 Slide 23
Decision sub trees

- All Global SOA (sub-)dimensions need to be considered for decision sub trees, some of them actually require sub trees of their own.

- Decisions trees are based on design rules and other types of IT constraints.

- Most decisions are about the service scope (i.e. global or local).

- Global SOA Sub dimension decision trees can be added to the overall Global SOA decision tree.

- The actual usage of the sub trees might be done through check lists where local is the the dominant attribute (i.e. if one check requires a local service and all other checks indicate a global service, than it has to be a local one).

```
Data Variability

No

Local

Yes

Global

Can service separated to local and global parts?

No

Local Service

Yes

Global Service + Local Service + WF
```
Cohesive design rule sets

- First three layers are out of control by IT. They are driven by ever changing business environment influences. These layers have to be described by
 - constraints and
 - assumptions

- We have to accept environmental flexibility and focus on building up viable SOA solution inside given constraints and assumptions.

- Use MCCD to identify preferred design rules

- Use Global SOA decision tree to
 - achieve cohesive sets of design rules
 - connect different design rules to each other
 - show different levels of design rules
Orchestration example 1/5

Assumptions
- every element can be global
- every element can be invoked according to orchestration layering (top down)
- global and local variants are distinct (no global service is equal to a local one)
- each element is used only once in a sequence
- topology is not considered (single implementation = one global variant, multiple local variants)
Orchestration example 2/5

- **Symbols**
 - \(m_g \) – number of macro flows (global)
 - \(m_l \) – number of macro flows (local)
 - \(n_g \) – number of micro flows (global)
 - \(n_l \) – number of micro flows (local)
 - \(c_g \) – number of composite services (global)
 - \(c_l \) – number of composite services (local)
 - \(a_g \) – number of atomic services (global)
 - \(a_l \) – number of atomic services (local)
 - \(k \) – number of locations

- **Complexity Function**
 \[
 \text{MCCD} = (m_g + m_l k + 1) \times (n_g + n_l k + 1) \times (c_g + c_l k + 1) \times (a_g + a_l k)
 \]
Orchestration example 3/5
Orchestration example 4/5

- **Constraint**
 - Each layer is only allowed to access/use the next deeper level.
 - Hence, all intermediary levels have to be implemented.

- **Symbols**
 - m_g – number of macro flows (global)
 - m_l – number of macro flows (local)
 - n_g – number of micro flows (global)
 - n_l – number of micro flows (local)
 - c_g – number of composite services (global)
 - c_l – number of composite services (local)
 - a_g – number of atomic services (global)
 - a_l – number of atomic services (local)

- **Adopted Complexity Function**
 - $\text{MCCD} = (((m_g + m_l) \times (n_g + n_l) + 1) \times (c_g + c_l) + 1) \times (a_g + a_l)$
Orchestration example 5/5

- Random Example
 - 10,000 atomic services
 - 2,000 composite services
 - 500 micro flow services
 - 100 macro flow services
 - 3 locations
 - local/global ratio is e.g. 1:9 (9 services out of 10 are local)

- Orchestration complexity without constraint and local/global ratio 1:9:
 61,740,203,868,000 variants

- Orchestration complexity with constraint and local/global ratio 2:8:
 45,873,495,226,000 variants

=> Difference of about 1/4!
Agenda

- Introducing Credit Suisse
- SOA @ Credit Suisse
- Global SOA
- Related work
- How to build global SOA
- Roadmap
Managed Evolution

Balanced Development of IT Efficiency and Business Value

Driver: Solution delivery and IT operations efficiency

Project Contribution to Business Value

Unbalanced Development

Project Contribution to IT Efficiency

Unbalanced Development

Driver: Business requirements, Time to market

Business Value

Managed Evolution: Balanced Development of IT Efficiency and Business Value

[Murer]
Summary

- **Building up Global SOA**
 - Start first with small set of design rules
 - Ensure in practice that these rules are cohesive

- **Continue with iterations**
 - Revise existing design rules
 - As next identify and verify next design rules using MCCD
 - Use decision trees to ensure cohesiveness of new design rules
 - Apply new rules

- **Objectives**
 - Global SOA as a viable system
 - Managed complexity growth of Global SOA
 - Controlled MCCD of Global SOA

- We have always tried to come up with design principles and design rules, but we did not consider potential side-effects from other (sub-) dimensions

- Only difference is that by using solution space approach, we can consider all dependent (sub-) dimensions
References

[Murer] Stephan Murer, Bruno Bonati, Frank J. Furrer; Managed Evolution, A Strategy for Very Large Information Systems; Springer Verlag, 2011

[Zdun] Uwe Zdun; Modeling Process-Driven and Service-Oriented Architectures Using Patterns and Pattern Primitives; ACM-TRANSACTION September 19, 2007 23:50

[ATAM] ATAM: http://www.sei.cmu.edu/architecture/tools/atam/

[Zimmermann] Olaf Zimmermann, Jana Koehler, Frank Leymann; Architectural Decision Models as Micro-Methodology for Service-Oriented Analysis and Design

Q&A?