AirCERT: Building a Framework for Cross-Administrative Domain Data Sharing

Roman Danyliw <rdd@cert.org>

FloCon 2004: Complementary Architecture Panel

CERT® Network Situational Awareness Group
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890

The CERT Network Situational Awareness Group is part of the Software Engineering Institute. The Software Engineering Institute is sponsored by the U.S. Department of Defense.
Background

• Form situational awareness for the SEI, its sponsors, and the Internet community
 – Big picture view of threats

• Constraints
 – Situational awareness can only be formed with data from many organizations – all data is governed by the constraints of its owners
 – Must provide a reasonable value-proposition for data sharing
 – Strict hierarchies in data sharing will not scale
 – Solutions must be built with open and transparent architectures
Analytical Concerns

Focus on merging and analyzing data from multiple view points

- Distinguish between targeted, localized, and Internet-wide activity
 - Widely targeted services
 - Clusters of attacks
 - Passive detection of new tools
 - Attack techniques *de-jour*
 - Attack sources

- **Historical trending**
 - Enable forward estimation of expected intruder activity of a site
Current Results

- Generating “Top 10” lists and volumetric measures based on:
 - Packet/Flow features: IP addresses, ports, protocols, signature, etc.
 - Context: timing, vulnerability, country, net-blocks, etc.
Implementation

• http://aircert.sourceforge.net

• Gather data from existing security solutions already deployed
 – Partner with security operations in the federal civilian community and in academia

• Write “glue” to integrate, convert, analyze, and share the data across organizations

• Provide analytical results back to participants and sponsors
Synthesized Data

- **Categorization**
 - SIM/SEMs (e.g., ArcSight)
 - IDS (e.g., Snort)
- **Discovery**
 - Flow data (e.g., argus)
- **Refinement**
 - Network topology information
 - IT/data data sharing policies
- **Context**
 - Vulnerability (e.g., CERT/CC KB)
 - Artifacts (e.g., CERT/CC AC)
Collection Infrastructure

• Provides infrastructure to *automatically* extract relevant information from existing instrumentation
 – If human intervention is required, sharing is too expensive
• Wrote “normalizers” to handle the reformatting and semantic transformation of the data
 – Too many vendor to write one-off tools for each
 – Write transformation engine that understands the underlying data-store: text files, RDBMS, etc.
Sharing Infrastructure: Collection

• The key to facilitating data sharing across organizations is
 – Making it seamless – no human interaction
 – Ensuring policy compliance

• All “normalizers”, “publishers”, and the underlying storage architecture have a notion that all data has an owner
 – Dissemination respects site’s local policy
 – Sanitization of sensitive data
 – Tagging of all data with a source identifier
Sharing Infrastructure: Dissemination

• Sharing data with us, is no different than data with others
• Tailor channel for the audience
 – Web-portal for pre-digested snapshot
 – Export bulk-data in a machine-readable format (e.g., XML, RSS)
Challenges and Solutions

• Many different formats used by the SEM and IDS products
 – Support standards efforts: IDMEF, IODEF, IPFIX, PSAMP
 – Storage-specific normalization tools

• Normalizing signatures across IDS products
 – Using CVE and custom classification taxonomies

• Analyzing the correct signature set
 – Use only explicit malicious activity
 – Filtering out policy violations and poorly written signatures
 – Use the correct tool for the task
 – Deploy non-IDS sensors next to the IDS

• Data loops
 – “Checksums” in the meta-data of the data stream
Challenges and Solutions

- Need both push and pull model, while supporting varied levels of automation
 - Unified presentation engine (ACIDv2)
 - Publisher for bulk-data transfer
Ongoing Work

- Intelligent end-points that summarize instead of sending all data
- Automated ways to overlay the context provided by vulnerability and artifact information
- Continued support for standards work
- Improved attention focusing techniques for flow data-to-IDS and vice versa
- Improved approaches for integrating the analytical products into operations