Managing Technical Debt in Complex Software Systems

Technical debt can be defined as a design or construction approach that is expedient in the short term but that creates a technical context in which the same work will cost more to do later than it would cost to do now. If managed well, some debt can accelerate design exploration. Left unrecognized and unmanaged, accumulated technical debt results in increased development and sustainment costs.

The Technical Debt Timeline

The technical debt timeline typically has five phases:

1. The time when technical debt is taken on. For example, rather than investing in identifying common services, developers copy and modify code.

2. The time when technical debt is recognized and made visible. Ideally, this should overlap with the time that technical debt is taken on (Phase 1).

3. The ideal time to plan and re-architect to pay back the debt. This is a function of the ongoing cost of the debt (interest) accumulating during the interval, \(t_j \). Paying back the debt (principal) can exceed the benefit of the features developed at the expense of the debt.

4. The time interval, \(t_j \), between Phase 3 and Phase 4 is often the point when organizations recognize the pain. They know that the debt exists, but they have no planned strategies for dealing with the debt, and the accumulated interest of the technical debt now exceeds the initial short-term benefits.

5. Organizations decide whether to pay back some or all of the debt and to deliberately manage the rest of the existing and future debt. They begin monitoring the accumulating technical debt and accounting for it during planning cycles.

Bridge the Gap Between Business and Development

Managing technical debt effectively requires project managers, key decision makers, and the technical teams to agree on the project objectives. Achieving success by uncovering, prioritizing, reducing, and eventually strategically taking advantage of technical debt requires the following:

- Development teams must be empowered and incentivized to communicate known sources of debt.
- Management must be willing to provide resources to pay debt back when needed.
- If priorities change often and lead to unexpected sources of technical debt, a technical debt management strategy must be developed.
Managing Technical Debt in Complex Software Systems

Technical Debt Evaluation
To meet the challenge of uncovering, communicating, and managing technical debt, the Software Engineering Institute (SEI) has developed a systematic approach. It includes techniques for making technical debt visible, determining what type of debt the project has, and integrating debt into project planning.

Make technical debt visible.
Often, development teams know that some project components may incur future rework, but they do not disclose it. The SEI team engages with the project managers and software development teams to identify debt by answering questions such as the following:

- Is adding a new capability taking longer than expected? If so, are the root causes known?
- Would the system be able to upgrade to a new technology with ease? What is the evidence?
- Are underlying structural issues making defects hard to resolve?

Determine the type of technical debt.
Unstructured large classes, global variables, cyclic code dependencies that create performance issues, and unnecessary copy and paste are all issues of low code quality that result in maintainability challenges and easily lead to technical debt. Managing debt that results from low code quality and managing debt that results from wrong or obsolete architectural issues require different strategies. The SEI team engages with the project managers and software development teams to answer questions such as the following:

- Were structural shortcuts—such as unwanted modules, large modules, or unsystematic reuse—taken to optimize resources or for technical reasons? Do the systems need to be re-architected?
- Do the systems meet key runtime requirements, especially in security, performance, and availability? If not, are the root causes known, and are there plans to fix these issues?
- Are standards and procedures followed for development practices?
- Do teams have sufficient development infrastructure and tools to follow state-of-the-art configuration management and testing practices?
- Does the system architecture cause more technical debt to accumulate?

Integrate technical debt into project planning, and associate technical debt with risk.
Managing technical debt is rooted in knowing the system’s structure and behavior and balancing the program’s short-term and long-term goals. In particular, data collection and analysis techniques must incorporate technical debt management into planning and risk management. The SEI team—together with the project managers and software development teams—identifies areas where data can help uncover hidden sources of technical debt and help prioritize where to pay debt down first. We help the organization answer the following questions:

- Does the project allocate resources for paying down known sources of debt and uncovering those that may not be explicit?
- Is there a debt strategy based on the risk profile of the system?
- Is it possible to identify and communicate known sources of technical debt across the project artifacts?

Engage with Us
If you would like to incorporate data-driven technical debt management practices in your current project or in your organization, please contact SEI Customer Relations at info@sei.cmu.edu or 1-412-268-5800.

Additional Resources
Architectural Technical Debt Library
http://www.sei.cmu.edu/architecture/research/arch_tech_debt/arch_tech_debt_library.cfm

Architectural Technical Debt Blog Archives
http://blog.sei.cmu.edu/archives.cfm/category/technical-debt

For General Information
For information about the SEI and its products and services, contact Customer Relations
Phone: 412-268-5800
FAX: 412-268-6257
info@sei.cmu.edu
www.sei.cmu.edu

© 2014 Carnegie Mellon University
The Software Engineering Institute (SEI) is a federally funded research and development center sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University. DM-0001849

Technical debt, like architecture, is invisible to most stakeholders. And like defects, technical debt has negative value if left unmanaged.

<table>
<thead>
<tr>
<th>Positive value</th>
<th>Visible feature</th>
<th>Hidden architectural feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative value</td>
<td>Visible defect</td>
<td>Technical debt</td>
</tr>
</tbody>
</table>

Technical debt evaluation table.