
Technical Debt at the Crossroads of Research and Practice 
Report on the Fifth International Workshop on Managing Technical Debt 

Davide Falessi 
Fraunhofer Center for 

Experimental Software Engineering 
College Park, MD, USA 

dfalessi@fc-md.umd.edu 

Philippe Kruchten 
Electrical & Computer Engineering 

University of British Columbia 
Vancouver, Canada 

pbk@ece.ubc.ca 
DOI: 10.1145/2579281.2579311 

http://doi.acm.org/10.1145/2579281.2579311 
 

Robert L. Nord, Ipek Ozkaya 
Software Engineering Institute 

Carnegie Mellon University 
Pittsburgh, PA, USA 

{rn, ozkaya}@sei.cmu.edu 
 

ABSTRACT 
Increasingly, software developers and managers use the metaphor of 
technical debt to communicate key trade-offs related to release and 
quality issues. We report here on the Fifth International Workshop on 
Managing Technical Debt, collocated with the Seventh International 
Symposium on Empirical Software Engineering and Measurement 
(ESEM 2013). The workshop participants reiterated the usefulness of 
the metaphor, shared emerging practices used in software development 
organizations, and emphasized the need for more research and better 
means for sharing emerging practices and results. 

Keywords 
Technical debt; software economics; software quality; software 
evolution; state of the practice. 

1. INTRODUCTION 
The technical debt metaphor introduced by Ward Cunningham in 1992 
[1] has been further studied to better define the concept and its 
applicability to software development. Steve McConnell defines 
technical debt as “a design or construction approach that’s expedient in 
the short term, but that creates a technical context in which the same 
work will cost more to do later than it would cost to do now” [2]. 
McConnell further differentiates between two types of debt: Type 1, 
which is unintentional and nonstrategic, and Type 2, which is 
optimizing for the present and strategic for the short term or long term 
[3]. This distinction generates discussion, and often confusion, about 
what should be considered debt. For example, participants of the 
Second International Workshop on Managing Technical Debt debated 
questions such as whether to treat defects as technical debt or whether a 
lack of documentation constitutes technical debt [4]. The third 
workshop on technical debt aimed to address this confusion by 
delineating a technical debt landscape [5]. 

The topic of technical debt is complex and includes multiple aspects of 
software development. Understanding and managing technical debt 
seems possible only by combining solutions from different software 
engineering areas, including qualitative studies, software metrics, 
prediction, and release planning. During this Fifth International 
Workshop on Managing Technical Debt, we observed emerging 
practical approaches from industry that provide real benefits to 
managing technical debt. But there are several open problems, including 
the absence of a reliable metric to measure technical debt and the 
inability of available tools to describe the interest to be paid back. 

From an empirical perspective, technical debt encapsulates some subtle 
aspects of software development and provides a context-dependent way 
of thinking about software quality across life-cycle phases, in a way that 
is amenable to quantitative analysis and hence objective observations. 
Thus, technical debt provides a potentially powerful combination of the 
maintainability, evolvability, quality, cost-effectiveness, and resource 
management aspects of software development for guiding empirical 
research. For example, technical debt encapsulates the incentive to 
measure not only instances of rework but also the opportunity costs 
should that rework not be performed. In addition, the concept of debt 

effectively transmits the results of this research to practitioners because 
they can recognize the existence and rational management of trade-offs. 

Technical debt can be studied from different perspectives. However, 
during the discussions in the workshops, a unifying perspective has 
been emerging of technical debt as the invisible results of past decisions 
about software that affect its future. The effect can be negative if debt 
exists in the form of poorly managed risks, but if properly managed 
debt can be seen in a positive light as adding value in the form of 
deferred investment opportunities. The results of the fourth workshop 
on technical debt allowed us to make the definition of technical debt 
crisper by highlighting the following considerations. Technical debt [6] 

 reifies an abstract concept 
 is not simply bad quality 
 can be introduced by a shift in context 
 is not defects 
 is not lack of process 
 is not the new features not yet implemented 
 implies both principal and interest 
 depends on the future 
 cannot be directly measured 
 should not be completely eliminated 
 should not be treated in isolation 
 can be a wise investment 
Large organizations have explicitly introduced technical debt 
management in their software development process as something to 
identify, value, and consider while planning iterations and releases. One 
such example is Cisco in Ireland [7]. 

Industry’s increasing interest in and the emergence of organization-
specific practices can be seen as early indications that industry needs 
clearly defined practices for managing technical debt to deal with issues 
such as evolution, strategic resource management, and bridging the 
stakeholder communication gap. From our interactions with 
practitioners dealing with technical debt, we have noticed that 
organizations that embrace technical debt as part of their iteration-
planning practices achieve success as a result of the following actions: 

 making technical debt visible 
 differentiating strategic structural technical debt from technical debt 

that emerges from low code quality 
 using the elicited technical debt as a means for bridging the gap 

between the business and technical sides of the organization 
 integrating technical debt into planning 
 associating technical debt with future risk to identify a payback 

strategy 
This fifth workshop consisted of invited presentations, a panel, and 
discussion sessions among the participants. The presentations, available 
here [8], included 

 Robert Eisenberg, Software Engineer Senior Staff, Lockheed Martin 
Corporation. Management of Technical Debt: A Lockheed Martin 
Experience Report. 

ACM SIGSOFT Software Engineering Notes Page 31 March 2014 Volume 39 Number 2

http://doi.acm.org/10.1145/2579281.2579311


 Todd Fritsche, Chief Architect, Siemens Healthcare Health Services. 
Technical Debt: Identification, Payment, and Restructuring. 

 Murray Cantor, Distinguished Engineer, IBM Rational Software. 
Technical Liability: Extending the Technical Debt Metaphor. 

 Olivier Gaudin, founder and CEO, SonarSource. Take Control of 
Your Technical Debt. 

 Guenther Ruhe, Industrial Research Chair in Software Engineering, 
University of Calgary. Product Release Planning in Consideration of 
Technical Debt. 

 Carolyn Seaman, Associate Professor at UMBC, Research Fellow at 
Fraunhofer USA. Technical Debt: At the Intersection of Decades of 
Empirical Software Engineering Research. 

The presentations and discussions among the participants of the 
workshop reiterated that after decades of empirical software engineering 
research and practice, the study of managing technical debt is at a 
turning point [9]. In her opening talk, Carolyn Seaman stated that “it is 
only a little hyperbolic to call this a watershed moment for empirical 
[software engineering] study, where many areas of progress are coming 
to a head at the same time” [10]. 

In Section 2, we describe these different software engineering areas that 
contribute to the research and practices in managing technical debt that 
were discussed during the workshop. Section 3 summarizes future 
research directions. 

2. THE CROSSROADS 
2.1 Software aging and decay 
Technical debt resonates with maintenance and evolution challenges 
when it needs to be repaid, especially with refactoring and re-
architecting. Lehman observes that for systems to remain useful they 
must change, and that change will increase their complexity, leading to 
software decay if refactoring is not done as needed [11]. Parnas calls 
this phenomenon “software aging,” reflecting the failure of a product 
owner to modify software to meet changing needs [12]. Lehman’s 
observations about system evolution still apply to projects that follow 
agile software development approaches [13]. While Lehman’s laws of 
evolution provide insight into the inevitability of and need for re-
architecting (and the high potential of debt that can accumulate), work 
in this area has not addressed abstraction between code and architecture 
beyond the application of pattern-based approaches [14], which a better 
understanding of architectural technical debt can address. 
Technical debt is in some way a restatement of ideas established in the 
software evolution and maintenance literature: systems age and they 
need to keep evolving to continue to meet their business goals. The 
theories within software evolution and system aging apply in 
understanding what debt is and how to manage it. 

2.2 Qualitative methods 
Qualitative research methods were designed, mostly by social scientists 
[15], to study the complexities of human behavior (e.g., motivation, 
communication, and understanding). Other disciplines have developed 
qualitative research methods, and researchers commonly use them to 
handle the complexity of issues involving human behavior [16]. 
In general, qualitative methods are preferable to quantitative ones to 
study phenomena for which reliable metrics (leading to quantitative 
data) do not yet exist [17]. Moreover, qualitative methods are 
particularly effective in capturing context factors [18]. To date, 
technical debt does not have reliable metrics [19] that software 
engineers and managers can use in decision making. A key challenge in 
creating a quantitative measurement environment for measuring 
technical debt is understanding the definitions and acceptable ranges of 
technical debt across contexts. However, this challenge also presents an 
opportunity to investigate using qualitative methods to understand and 
manage technical debt. 

Application of qualitative methods in software engineering has reached 
a level of maturity. Thus, it is time to apply qualitative studies to 
manage technical debt. 

2.3 Software metrics 
Software metrics started in the early 1970s by measuring code 
complexity of software systems [20]. Two main problems in using 
software metrics are their reliability and their cost. Reliability is a 
problem because metrics can measure a different phenomenon than the 
one of interest, or analysts could make mistakes during data collection. 
Using metrics to guide development requires investing in appropriate 
tool support as well as in processes that can seamlessly integrate the 
results into decision making for software development, both of which 
require resources that development teams may not have. 
However, progress in software metrics is rapidly advancing. Both 
researchers and tool vendors, including groups within large 
organizations such as Microsoft and Rational Software, have developed 
many tools. The software measurement and analysis research 
communities (e.g., Mining Software Repositories and Predictive Models 
in Software Engineering) are making solid progress in creating a 
reliable underlying theory to integrate data collection, analysis, and 
visualization into the development process. However, because we don’t 
yet have reliable metrics for technical debt [19], we are limited to 
showing trends in other quality metrics. For example, we might assume 
that as complexity increases, more debt accumulates in the system. This 
approach has severe limitations because it assumes a linear relationship 
between metrics for code quality and the principal and interest of 
technical debt. 
Bringing the software measurement and analysis and technical debt 
research communities together can accelerate progress. Questions such 
as what kinds of anomalies constitute debt, whether there is a 
relationship between code quality and high interest rates on debt, and 
whether there are certain classes of code quality issues that contribute to 
debt are all open questions that the advancement in tools and software 
metrics can start addressing with rigorous research methods. 

2.4 Prediction 
Technical debt is about the future status of a system, especially the 
uncertainty in assessing the impact and size of the interest payments in 
software development. Managing technical debt involves predicting the 
future of a system. 
Prediction models have been studied and adopted in software 
engineering, especially models for estimating effort [21] and bugs [22]. 
However, computing the interest of technical debt in a system requires 
making estimates about the future and includes uncertainty. Approaches 
that overlook uncertainty could provide unrealistic results. Predicting 
the negative impact of technical debt as interest payments and coming 
up with strategies to reduce the interest accordingly can take advantage 
of research on predictive models. 

2.5 Release planning 
Release planning concerns deciding what new features or changes to 
implement during each release of a system [23]. As shown in previous 
studies [7], developers should balance the effort available in a given 
release between providing value to customers (i.e., more functionality) 
and removing technical debt. Thus, there is opportunity to apply 
methods from release planning to managing the health of a project and 
preventing too much debt from accumulating. 

2.6 Architecture knowledge management and 
design trade-offs 
The relationships among making decisions about architecture design, 
knowledge management, and design trade-offs are critical. Often, the 
decision to take on debt and the payback strategies are directly related 
to such design trade-offs [24]. Foundational work in architecture such 
as architecture patterns, architecturally significant requirements, and 
architecture evolution has unexplored relationships to taking on 

ACM SIGSOFT Software Engineering Notes Page 32 March 2014 Volume 39 Number 2



technical debt, monitoring it, and evolving the system to pay down the 
debt. These concepts provide the foundation for tools and techniques 
that can improve how we manage technical debt. 

3. FUTURE DIRECTIONS 
More research is needed to quantify technical debt, produce repeatable 
results, and understand its relationship to software development. 

Quantifying the principal and interest of technical debt to support 
decision making by managers and developers: 
 Principal: Code assessment tools such as SonarQube 

[http://www.sonarqube.org/] and Cast Software’s Application 
Intelligence Platform [http://www.castsoftware.com/products/the-
application-intelligence-platform] attach dollar figures to the status of 
a project. The amount indicates the cost necessary to modify the 
system to pay down the principal of its technical debt. This approach 
has two main drawbacks: 1) a perfect system with no debt is not a 
feasible target [25], and 2) scenarios exist in which the debt of a 
project exceeds its profit although the project still provides positive 
revenues and shutting it down would not make sense. 

 Interest: Interest is not quantified in the same terms as the principal, 
so it is hard to trade off principal and interest. 

 Decision making: These issues challenge the use of technical debt in 
practice. A project manager cannot be convinced of the value of 
managing technical debt if the dollar figure is incongruous with other 
measures. Tools provide many false positives. Developers can be 
demotivated by these red flags (e.g., data formatting mistakes), or 
they can take these as negative evaluations of their work. 

Testing the hypothesis and sharing results that other researchers can 
repeat: 

 Progress on managing technical debt takes advantage of existing work 
in code quality analysis and software measurement. However, we still 
need research that tests the basic hypotheses, such as whether 
modules that have low quality indicators also have real debt. This 
requires both articulating relevant hypotheses and running 
experiments with relevant data. 

Expanding the application of the technical debt concept to other areas 
in software development: 

 The definition of technical debt that is most accepted describes it as a 
measurement of the intrinsic quality of the software. This description 
also has a direct relationship to its roots in Cunningham’s use of 
technical debt to describe a system’s quality. However, software 
development organizations, especially large ones, see benefit in 
communicating such intrinsic quality issues in other software 
development artifacts that contribute to the development of a system, 
in particular requirements and test artifacts. The value and usefulness 
of expanding the concept to understanding the quality and trade-offs 
within such artifacts require further research. 

4. ACKNOWLEDGMENTS 
We are grateful to the many participants in the technical debt 
workshops over the last four years, the contributors to the IEEE 
Software Special Issue on Technical Debt, and our consulting customers 
for their contributions. We extend our thanks to all those who have 
participated in the organization of this fifth workshop. 

5. DISCLAIMER 
The views and conclusions contained in this document are solely those 
of the individual authors(s) and should not be interpreted as 
representing official policies, either expressed or implied, of the 
Software Engineering Institute, Carnegie Mellon University, the U.S. 
Air Force, the U.S. Department of Defense, or the U.S. Government. 

6. REFERENCES 
[1] W. Cunningham. The WyCash Portfolio Management System. In 

OOPSLA’ 92 Experience Report. Vancouver, 1992. 
[2] S. McConnell. Managing Technical Debt [Webinar], Sep. 2011. Available 

from http://www.youtube.com/watch?v=lEKvzEyNtbk 
[3] S. McConnell. Technical Debt. 10x Software Development, 2007. 

Available from http://www.construx.com/Page.aspx?cid=2801 
[4] I. Ozkaya, P. Kruchten, R. Nord, and N. Brown. Managing technical debt 

in software development. ACM Softw. Eng. Notes 36, 5 (2011), 33-35. 
[5] P. Kruchten, R. L. Nord, and I. Ozkaya. Technical debt: from metaphor to 

theory and practice. IEEE Software 29, 6 (2012), 18-21. 
[6] P. Kruchten, R. L. Nord, I. Ozkaya, and D. Falessi. Technical debt: towards 

a crisper definition; report on the 4th International Workshop on Managing 
Technical Debt. SIGSOFT Softw. Eng. Notes 38, 5 (2013), 51-54. 

[7] K. Power. Understanding the impact of technical debt on the capacity and 
velocity of teams and organizations: viewing team and organization 
capacity as a portfolio of real options. In 4th International Workshop on 
Managing Technical Debt (MTD), IEEE CS, 2013, 28-31. 

[8] Fifth International Workshop on Managing Technical Debt, Oct. 9, 2013. 
Available from http://www.sei.cmu.edu/community/td2013esem/program 

[9] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten, E. Lim, A. 
MacCormack, R. Nord, I. Ozkaya, R. Sangwan, C. Seaman, K. Sullivan, 
and N. Zazworka. Managing technical debt in software-reliant systems. In 
Future of Software Engineering Research (FoSER 2010) Workshop, part of 
FSE 2010. Santa Fe, NM. ACM, 2010, 47-52. 

[10] F. Shull, D. Falessi, C. Seaman, M. Diep, and L. Layman. Technical debt: 
showing the way for better transfer of empirical results. Forthcoming in 
Future of Software Engineering, published in honor of the 60th birthday of 
Prof. Dr. H. Dieter Rombach, 2013. 

[11] M. M. Lehman. Program Evolution: Processes of Software Change. 
Academic Press Professional, San Diego, 1985. 

[12] D. L. Parnas. Software aging. In Proceedings of the 16th International 
Conference on Software Engineering. Los Alamitos, CA, 1994, 279-287. 

[13] R. Sindhgatta, N. C. Narendra, and B. Sengupta. Software evolution in 
agile development: a case study. In Proceedings of the ACM International 
Conference Companion on Object Oriented Programming Systems 
Languages and Applications Companion. ACM, New York, 2010, 105-
114. 

[14] C. J. Neill and P. A. Laplante. Paying down design debt with strategic 
refactoring. Computer 39, 12 (2006), 131-134. 

[15] S. J. Taylor and R. Bogdan. Introduction to Qualitative Research Methods. 
New York: John Wiley & Sons, 1984. 

[16] C. B. Seaman. Qualitative methods in empirical studies of software 
engineering. IEEE Trans. Softw. Eng. 25, 4 (1999), 557-572. 

[17] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and A. Wesslén. 
Experimentation in Software Engineering: An Introduction. Kluwer 
Academic, 2000. 

[18] E. Lim, N. Taksande, and C. B. Seaman. A balancing act: what software 
practitioners have to say about technical debt. IEEE Software 29, 6 (2012), 
22-27. 

[19] R. L. Nord, I. Ozkaya, P. Kruchten, and M. Gonzalez-Rojas. In search of a 
metric for managing architectural technical debt. WICSA/ECSA, 2012, 91-
100. 

[20] T. J. McCabe. A complexity measure. IEEE Trans. Softw. Eng. 2, 4 (1976), 
308-320. 

[21] M. Jorgensen and M. Shepperd. A systematic review of software 
development cost estimation studies. IEEE Trans. Softw. Eng. 33, 1 (Jan. 
2007), 33-53. 

[22] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell. A systematic 
literature review on fault prediction performance in software 
engineering. IEEE Trans. Softw. Eng. 38, 6 (Nov. 2012), 1276-1304. 

[23] G. Ruhe. Product Release Planning: Methods, Tools and Applications. 
Taylor & Francis, 2010. 

[24] R. L. Nord, I. Ozkaya, and R. S. Sangwan. Making architecture visible to 
improve flow management in lean software development. IEEE Software, 
Special Issue on Lean Software Development, 29, 5 (Sep./Oct. 2012), 33-
39. 

[25] D. Falessi, M. A. Shaw, F. Shull, K. Mullen, and M. Stein. Practical 
considerations, challenges, and requirements of tool-support for managing 
technical debt. In 4th International Workshop on Managing Technical Debt 
(MTD), IEEE CS, 2013, 16-19. 

 

ACM SIGSOFT Software Engineering Notes Page 33 March 2014 Volume 39 Number 2

http://www.youtube.com/watch?v=lEKvzEyNtbk
http://www.construx.com/Page.aspx?cid=2801
http://www.sei.cmu.edu/community/td2013esem/program/



